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Abstract

Suppose that one has a random sample from a survival function of the form (1 —
Fy)(1 - G) where Fp is known and G is unknown. We study the problem of estimation
of G in this paper. The GMLE for G is known to be inconsistent when the sampling
distribution is continuous. The same is shown to hold true for the Bayes estimator
of G when one assigns it a Dirichlet prior. Even though there are a lot of examples
where using the Dirichlet prior results in an inconsistent estimator, the heuristic in
this case is lucid and the inconsistency stark. The latter inconsistency arises because
of the discreteness of the evaluations from a Dirichlet prior. In the discrete situation
consistency is proved for both the GMLE and the Bayesian estimator using the Dirichlet

prior.
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1 Introduction

Let us consider the problem of estimating the distribution function, given a random
sample, under the constraint that the true distribution function is in the class of all distribu-
tions uniformly stochastically smaller than a known given distribution. For two distribution
functions, F' and G, on [0,00) we shall say that F is uniformly stochastically smaller than
G and denote it by F' <3y G if (1 — G)/(1 — F) is non-decreasing on the support of F'.
This problem is of interest to us as in our problem, we are basically restricting the sampling
distribution to not only being uniformly stochastically smaller than Fy but also that it is of
the specific form FyG, where G is some distribution function and G represents its survival
function. It is worth noting that, in the definition of uniformly stochastically smaller, if one
further imposes the condition that the ratio G/F is not only nondecreasing but approaches
infinity as F' tends to zero, then we are basically requiring F' to have the above form.

There is some literature on estimating the distribution function under a constraint of
uniform stochastic ordering. The assumption that Fp is known is reasonable when the life
testing is done in a controlled environment which permits it’s estimation with sufficient
accuracy. It was shown in Rojo and Samaniego (1990) that the nonparametric maximum
likelihood estimator, NPMLE, for H is inconsistent under the constraint H <4y Fo, for
F, increasing and continuous. There it was shown that the NPMLE for H is of the form
1 — Fy - H,, where H, is the empirical distribution function, which converges to the wrong
limit 1 — FuH, instead of H.

We mainly consider two different approaches to our problem, namely, the Maximum
Likelihood and the Bayesian approaches to inference. Both these approaches have been used
to tackle a wide variety of statistical inference problems in the literature. They usually give
rise to estimators which a satisfy a variety of different reasonability criteria, one of the least
stringent being consistency. Below we shall be dealing with two different kinds of consistency,
namely, Classical and Bayesian consistency. In this paper we shall study the above infinite-
dimensional estimation problem and investigate the consistency property of the estimators

derived. We shall see, as has been often observed, that the infinite-dimensional setting is a



very different scenario than to the finite-dimensional one.

One type of estimation procedure we do not talk about in this paper is the method
of minimum distance estimation.What one does here is to find an appropriate distance on
the space of probability measures and find the distribution in the class under consideration
which is closest to the empirical distribution function. So for example one could use the
Kolmogorov distance to start with and find the estimator. Even though the estimator
cannot be written down explicitly, very fast algorithms do exist to find approximate minimum
distance estimators. It is easy to see that the distance of the estimator from the truth is
bounded above by twice the distance of the empirical distribution function from the truth.
But in Rojo and Samaniego (1993), an estimator for H is found such that the distance
(Kolmogorov metric) from the truth is less than the distance of the empirical from the
truth. Their estimator can be written in a simple closed form. The interesting part is that,
even though they consider H to be in the larger class of distributions which are uniformly
stochastically smaller than Fp, their estimator is of the form we are considering in this paper.
Hence the minimum distance estimator for H using the Kolmogorov metric is of no interest.
Other distances could be tried, but we shall not consider this in this paper.

The maximum likelihood approach to our estimation problem is dealt with in the second
section. In this section we discuss the consistency of the estimator derived in two cases,
namely, the unrestricted case under both the continuous and discrete assumptions.

In the third section we give some alternate definitions of the Dirichlet process prior
and some basic facts about it. We also define Bayesian consistency, or rather, posterior
consistency.

In the next two sections we derive Bayesian estimators which, even though they can
be blamed for being ad hoc, due to the arbitrariness in the choice of the prior, usually
prove to be attractive estimators. Since the problem is intrinsically non-parametric, by
which we mean there is no natural finite dimensional parametrization, it would be very non-
robust to restrict oneself to a finite-dimensional parametric class for the sake of inference.
The Dirichlet being a prior with many attractive properties, was chosen as a prior on the

unknown distribution G. In the fourth section we use such a prior and discuss the discrete



situation. In the fifth section we derive the estimator for G that results from using such a
prior and prove that it is inconsistent for continuous distributions. It so happens that the
heuristic for this inconsistency are lucid and the proof is elementary, in contrast to other

inconsistencies observed using the Dirichlet process.

2 Maximum Likelihood Estimator

Let us recall that we are trying to find an estimate for the parameter G which can possibly
be any distribution on the positive half of the real line. This, in particular, implies that the
class of distribution functions H which arise by G assuming all possible distributions would
be an undominated class. By an undominated class of distributions we mean that there does
not exist a sigma-finite measure which dominates every member of the class. But to apply
the usual principle of maximum likelihood estimation one requires a likelihood, which can
only exist when the class of laws of the data considered is dominated. Hence we cannot apply
the usual maximum likelihood principle in our case. The definition of MLE that applies to
our case, and in almost total generality, is the one given in Kiefer and Wolfowitz (1956).
Their definition, as one expects, agrees with the usual one when the class is dominated. We
shall call the estimator as derived by their definition as the GMLE, generalized maximum
likelihood estimator. To define a GMLE let us assume that we observe a vector X which
has an unknown law P which belongs to a class of probability measures P. Let the observed

data vector be g. Define, for two probability measures P, P, in P, f(z, P, P,), by

dP

f(z, P, Py) = m(%%

the Radon-Nikodym derivative of P; with respect to P, + P;. Then P is said to be a GMLE
if for all Pin P
f(z,P,P) > f(z,P,P).

The Kaplan-Meier PL estimator is a GMLE for the relevant problem, see Kaplan and Meier
(1958) and Johansen (1978). Also, it is easy to check that, when there are no restrictions



on the distribution function in the i.i.d. sampling case, the empirical distribution function
is the GMLE for the unknown distribution function.

Now we shall precisely state what we shall mean by classical consistency of an estimator
for a distribution function. Let X;, ¢ =1,2,... be i.i.d. from a distribution function F'. Let
ﬁ'n be the estimator of F' based on the first n observations. Let Fy be the true law of X.

Then the sequence of estimators F,,, n =1,2,... is said to be consistent for F' at Fy if
Fo(t) — Fo(t) a.e.(Fo),

at all continuity points t of Fy. We shall simply say that a sequence of estimators is consistent
for F' if it is consistent at all Fy.

In the following for a distribution function G, right continuous, and real z we shall denote
by G{z} the probability of the point z, by G(z) we shall mean 1 — G(z) and by G*(z) we
shall mean G(z) + G{z}.

2.1 Unrestricted - Continuous Case

Lemma 2.1 Assume that Fy is continuous and that all the data points Z;, ¢+ = 1,2,...,n

are distinct. Then the GMLE of I;TGMLE is given by
Hoymie =1 — Fol,,
where H, denotes the empirical distribution based on Z;, 1 =1,2,...,n.

PROOF. The proof of the fact that we can restrict ourselves to G’s which give mass only to
points of the data is similar to that given in the derivation of the Kaplan-Meier estimator,
see Johansen (1978) and Kaplan and Meier (1958). Now it is easy to see that, for any such
G, the likelihood would be proportional to
L= [11Pe{ 2} Fo(2), (1)
=1
where by Pg{-} we mean the probability under G. Note that in the above we use the fact

that Fj is continuous in a crucial way. Now since we are maximizing L. w.r.t. G, it is clear

)



from (1) that Fy plays no role and that the maximum is attained when G is the empirical
distribution based on Z;, : = 1,2,...,n, H,, which is the GMLE for H with no restrictions.

Hence I:IGMLE =1- Fof_fn 0

Corollary 2.1 The above defined estimator I:IGMLE is an inconsistent estimator of H.

Proor. Follows trivially from the Glivenko-Cantelli theorem or the SLLN. O

Remark 2.1 As mentioned in the introduction, I;TGMLE is also the GMLE of H when one
considers the larger class of distributions which are uniformly stochastically smaller than Fp,
see Rojo and Samaniego (1990). Of course, their result does imply the above lemma but the

reason we have given the proof is because it is much simpler than it is in their case.

2.2 Unrestricted - Discrete Case

The following theorem completes the picture by discussing the discrete case and showing
that consistency is obtained in this case unlike the former. In the next section we shall show

that Bayes estimator with respect to any Dirichlet prior also behaves similarly.

Theorem 2.1 (Discrete case) Let Fy and G be distributions on {1,2,...}. Fy is assumed
to be known and G unknown. Let Z; 1 = 1,...,n be i.i.d. from H = 1 — FoG. Then the
M.L.E. of G s consistent.

PrOOF. Let {d,ds,...,d;} be the distinct observed values in ascending order and let
n;:=#{j:2z;=d;},i=1,2,...,k. The log-likelihood L(G) can be seen to be
L(G) = Y {ni - 1og(G*(di) - Fo{d:} + Fo(d;) - G{d:})}.
1
From the above, it is easy to see that the MLE of G, say é, would be supported on
{di1,d2,...,dr}. Let {0,04,...,0:} be defined such that 6y := 0 and
01 Z - 1

G{d:} = i1
6:-TI(1—6;) i=2,3,....k
1

6



Similarily we shall define {éo, él, R ék} Then the log-likelihood, L(G), can be written as

k

L(G) =3 _{( > n;)-log(l —0;)+n;-log(Fo{di} + 0:Fo{d:})}.

1 j>(+1)
It is clear from the above that ék = 1 and the sum is maximized by maximizing each term

separately. To this end note that

_ Z n;
Kk _ n; - Fo(d;) 20+ .
aai(L(G))_Fo{di}+0i'F0(di) 1—6)" 0<i<k

It is clear that the maximizing value §; would be

_ k +
. n;- Fo(dz) - Fo{dz} . E nj
6; = - 2 i=1,2,..., k—1.
Fo(dz) . Z:nj

Consistency of the above estimator follows from the SLLN. ]

3 Pre-requisites in Bayesian Nonparametrics

3.1 Dirichlet Process Prior

The Dirichlet process prior is a prior on the space of probability measures on a measurable
space. Let X be a set and A be a sigma field of subsets of X'. According to the definition in
Ferguson (1973), a Dirichlet Process with parameter «, denoted by D,, where « is a finite
measure on (X,.A) is a random process, P, indexed by elements of A4 with the property
that for every positive integer k, and every measurable partition {A;,..., Ax}, the random
vector (P(A1),..., P(Ax)) has a k-dimensional Dirichlet distribution with parameter vector
(a(A1),. .., a(A)).

It is worthwhile to know that in the case when X is the set of natural numbers and A is
the power set then the Dirichlet process prior is same as stick breaking with the proportion
of successive breaks being distributed as independent Beta distributions with parameter

depending on the parameter of the Dirichlet prior.
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One of the most important results on the Dirichlet process prior is the following from

Ferguson (1973). This is what makes it mathematically tractable for a Bayesian.

Proposition 3.1 (Ferguson) If P is a Dirichlet process with parameter o, and if given
P, Xi,...,X, is a random sample from P, then the posterior distribution of P given the
random sample is also a Dirichlet process but with parameter o+ 6x, where 6(x) represents

a point mass distribution at x.

Now we give an alternative constructive definition of a Dirichlet process prior given in
Sethuraman (1994). The following definition is simpler and the existence of the process fol-
lows immediately with topological assumptions on the measurable space unlike the Ferguson

definition.

Proposition 3.2 (Sethuraman) Let Y1,Y5,... be i.i.d. with a Beta distribution, B(M,1),

M >0, and X1, X3,... be i.i.d. from ag. Both the Y and Z sequences are independent. Let
i—1

P := Y P;§(X;), where P, :=Y; and P; := (1 — Y}-)JH Yi, 7 > 1. Then P is a Dirichlet
1

process with parameter Moyg.

There are a host of other important and interesting results on the Dirichlet process prior
available in the literature. We shall, as and when we need, mention some of them at the

appropriate places later in the paper.

3.2 Posterior Consistency

Let (X, A) be a measurable space and P be the set of all probability measures on (X, .A).
Let {P; : 8 € O} be an indexed class of probability measures. For a probability measure
P on (X, A) we shall denote by P> the countable product of P, a probability measure on
(X, Ax). Now let © be a probability measure on © with some associated sigma-field. Let
7, denote the posterior after observing the first n observations. We would say that (8, 7) is

consistent if

Tn(Ng) — 1 a.e.(Fp°),



for every neighborhood Ny of 8. When we talk about posterior consistency we must assume
some underlying topology on the parameter space. It is natural to endow the parameter
space with a topology which is induced by the mapping § — P, where the topology on
{Py : 8 € O} is the subset topology from that on P. So it is clear that we should be
looking for a reasonable topology on P so that consistency is meaningful. In the usual case
when (X, .A) happens to be a Polish space, i.e. a complete separable metric space with its
associated Borel sigma-field, it is natural to endow P with the weak topology, which also
happens to be a complete separable metric topology. If one achieves posterior consistency
for this weak topology it would be meaningful and moreover it is weaker than all the other
natural topologies, such as the total variation, on P. In other words with the weak-topology
it is easiest to achieve meaningful consistency. Consistency with weak-topology would imply
classical consistency of Bayesian estimators of all functions of § which would be bounded and
continuous in the above described induced topology. In this paper we shall only be working

with the consistency based on the weak-topology.

4 Bayesian Estimator : Unrestricted - Discrete Case

4.1 Introduction

Let us suppose that conditioned on G, X;,t = 1,2,...,n are ii.d. with common dis-
tribution G and let G be assigned a Dirichlet process prior with parameter o which we
shall denote by D,. Note that « is a positive finite measure and we shall sometimes write
it as Moo where M is a positive non-zero constant and « is a probability measure. Let
Y;,1=1,2,...,n beii.d. with common distribution Fy and let ¥ be independent of (X, G)
Let Z; = X; AY; fore=1,2,...,n. Let d; := Iix.<y;y for i = 1,2,...,n. In this section
we assume that both Fp and Gy are probabilities on {1,2,..} with whole support.

Also, as usual, empty sums will be taken as 0, empty products as 1 and 0° as 1. We shall

also make use of the following notations.

. N+(u) = __Z:II{ZDu}'



o C(M,n) = 1/’:13:(1\4 +9).

Whenever we say Bayes estimator we shall mean with respect to a squared error type
of loss. In this case the Bayes estimator of a probability measure would be the barycenter
of the posterior. More specifically, the Bayes estimator of the survival function evaluated
at a point shall be its posterior expectation. We end this subsection by giving a fact about

Dirichlet process priors which we shall need in the derivation of the estimator we seek.

Fact 4.1 The joint marginal distribution of Xs is given by the following.

Xi ~ Qo
i—1
o+ 21 6X_,-
Xile,---,Xi—l Nm fori=2,...,n.
PROOF. Follows from elementary facts about Dirichlet process priors. 0O

Remark 4.1 Note that the distribution of X is exchangeable which follows from the fact

that it is a mixture of i.i.d. probability measures.

Remark 4.2 Blackwell and MacQueen called the above a generalized Polya sequence with
parameter «. The Dirichlet process prior has an interpretation through these (generalized)

Polya sequences, see Blackwell and MacQueen (1973).

4.2 Consistency of the Estimator

Following Freedman (1963), we shall say that a probability u on the space of probability

measures on {1,2,..} is tail free if
1. u{F : F(k) <1} =1 for all k.

2. There is a natural number N such that the random vector {F{k} : k¥ < N} and the
random variables [1 — F(N+k—1)] ' F{N+k},1 < k < oo are mutually independent.

10



Below we state a result regarding tail free priors from Freedman (1963).

Proposition 4.1 (Freedman) Let u be a tail free probability on the space of all probability

measures on {1,2,..}. Then (u, F) is consistent if and only if F' is in the topological carrier

of .

Now we state and prove the main result of this section on the consistency of the Bayesian

estimator in the discrete setting.

Theorem 4.1 Let Fy and Go be distribution functions on {1,2,...}. Fy is assumed to be
known and Gy unknown. Let Z;, i =1,...,n, be i.i.d. from Hy =1— FyGo. We put a prior
on G as D,, such that a{c} >0, Vi > 1 and ||a|| = 3 a{i} < co. Then

1. The prior on the unknown distribution of the Z's, H = FyG, is tail-free.

2. The Bayesian estimator for G is consistent.

PRrROOF. Note that
=1
G{i} =6, J[(1 - 9;),:=1,2,...
4]

and
i-1

GT@) =J[Q—-96;),i=1,2,...

0

where 6y := 0 and 0;, for 2 =1,2,..., are independent random variables following

Betaz(a{i},é%1 afs}). Also note that
H{i} = Fo(i) - G{s} + Fo{i} - G*(3)

and

Using the above representation we get

H{y _ R}, F()
H(E-1) F(i—1) ° F@GE-1)

11



and
i-1

H{i} = TI(1 - 6;) - (Fo(z) - 6; + Fo{i}).

0
From the definition of tail-free priors and the above expression we see that the prior on H

is tail-free. Hence, by proposition 4.1, the Bayes estimator for H is consistent. As H is
linearly related to G and Fp has whole support, it follows that the Bayes estimator for G is

also consistent. |

5 Bayesian Estimator : Unrestricted - Continuous

Case

5.1 The Estimator

The set up is as in the previous section except that, in the rest of the paper, we shall

work with the following two assumptions unless specified otherwise.

o Iy and ap are continuous probabilities with positive densities fo and of, respectively,

w.r.t. Lebesgue measure on R™.

e Z;,1=1,2,...,n, is a sample from a survival function FoGo where Gy is continuous

which, in particular, implies the distinctness of the data points almost surely.

Now let us consider the problem where apart from the vector Z we also observe the
vector d. This is a regular censoring problem. Susarla and Van Ryzin (1976) found the
Bayes estimator using the Dirichlet process prior in the fashion mentioned above. Their

estimator is given below.

Proposition 5.1 (Susarla & Van Ryzin) The Bayes estimator of G when one has ob-
served (Z,d), denoted by é’d,n, is given by

5  aw4N*t() & [a(Z)+N*(Z:)+111 (1) (z,<u)}
Gan(w) = 25 11 | 60w (2)

12



Now it is clear that to find the estimate for G on the basis of just having observed Z we
have to find the conditional expectation of the above estimator w.r.t. d conditioned on Z.

So for this purpose we find below the joint distribution of d and Z.

Lemma 5.1 The joint density of d and Z w.r.t. the product of the counting measure on

{0,1}" and Lesbegue measure on R™ is given by,

[Fo(Z:)o! (Z:)|*((a(Z:) + N*(Z:)) fo( 20— (3)

s

C(M,n)

1

1

where o' is the density of a w.r.t. to Lebesque measure.

PRrOOF. Since {(Z;,d;)}7 is a finite exchangeable sequence let us assume without loss of
generality that (dy,...,dr) = (1,...,1) and (dk41,.-.,dn) = (0,...,0) with obvious modi-
fication for extreme values of k. Now since d; = 1 ~ Z; = X;, we have the joint marginal

density with respect to the natural dominating measure of {(Z;, d;)}* would be

k
[[1Fo(2:)e'(2:)]
i=1

k—1
T (M+4]
=0

Now all that remains is to find the joint conditional density of {(Z;,d;)}},, given {(Z;, d;)}%.

Since (dk41,---,dn) = (0,...,0) we have the required conditional density to be

Prob(X; € (Z;;00), i=k+1,...,n | X;=2Z;, t=1,...,k) II [fo(Z)]. (4)

i=k+1

Now note that the first term is precisely the joint survival function of a generalized Polya
k

sequence with parameter a+ 3 dz. Again by use of exchangeability we shall assume without

loss of generality that Zx4; > ... > Z,. We shall denote the survival function of a generalized

Polya sequence with parameter y by P,. With this notation the first term in (4) is

P Ziity vy Zn). 5
s, oeees ) (5

13



By distinctness of the Zs we have that (5) is the same as

ﬁ on:+1 ,pa+5z+i 5Z_(Zk+2, ey Zn) da(z)

=1

k
1
+ s > 1z:52,,, P k (Zkt2s- -+ Zn)
=1 °‘+5Z,'+Z 6Z]'
j=1

and by assumption that Zr.; > ... > Z, we can write the above as

& + >
(P e, (oo )

i=1

t

Now proceeding similarly it is clear that the joint density we seek can be written as
k _ n
C(,m) [ [R(Z)el(20) T [(@(20) + N*(Z)fa Z0).

Note that the expression in (3) is same as above under the assumption of ordering of d and

Z and does not depend on the ordering. Hence by exchangeability the proof. O

Remark 5.1 The posterior for G is a mixture of Dirichlet. This can be easily seen since the
conditional law of G given (8, Z) is a mixture of Dirichlet, see Blum and Susarla (1977) for
a precise representation. For the representation here one has to just use their representation

and the above lemma.

Theorem 5.1 The Bayes estimator for G when one has observed only Z, denoted by én, is
given by

A

X _ a(w)+N*t (@) ¢ Jo(Zi) I z;<u}
Gn(u) = LR i [1 + Fo(Zi)a’(Zé)+(°7(Zi)+N+(Zc'))fo(Z-')]' (6)

PROOF. Note first that (2) can be written as

= Of L a(Z; + i ;<u
an(u) = EWHN* () fl [ (Z)+N(Z)+ 7,0

(1-d;)
a(RF)n L &(Z:)+N*(2Z:) ] .

(7)

From (3) we get that the marginal density of Z when the coordinates are distinct is given

by

C(M,n) Il [Fo(Zi)e!(Z:) + (&(Z:) + N*(Z:)) fo(Z:)).

i

2

14



By doing similar algebra as needed to derive the above we get the numerator for the required

conditional expectation to be
C(M, n) SR ] [Fo(Z0)(2:) + (&(2:) + N*(20) + Lz Fo( 2]

The ratio of the last two expressions is precisely (6). Hence the result. O

Remark 5.2 Note that from Sethuraman and Tiwari (1982) we know that the limiting prior
does not intuitively correspond to an ignorance prior but the posterior sometimes becomes
free of the parameter o and hence in some sense corresponds to a noninformative posterior.
So it is interesting to find the limit of the above Bayesian estimator as we let M approach
zero. It does happen many times that the Bayesian estimator using the Dirichlet process
prior tends to the GMLE of the problem as we let M approach zero, see Pruitt (1990a).
In Pruitt (1990b, 1992) an example of inconsistency is given in the situation\ of estimating
a bivariate survival function where the limiting estimator derived in this fashion using a
Dirichlet process depends on the Dirichlet parameter. In this situation the GMLE is not
uniquely defined and consistency of the GMLE depends on the choice. This makes one
wonder if there is a connection between non-uniqueness of the GMLE and dependence of the
limiting estimator on the parameter. In this context it is worth noting that the situation
of truncated data, see Gasparini (1995), is an example where the limiting estimator does
depend on the parameter, but asymptotically has no effect and, in fact, coincides with the
GMLE, and the GMLE is uniquely defined. In the above, consistency is achieved. In our
problem we have similar behavior excei)t for the fact that the estimator is very different from
the GMLE and also is grossly inconsistent. To this end note that this limit is given by the

survival function given below.

N 1 u < Z(n)

a(Rt)—0 &o(u)-fo(Z(n))
(®") Fo(Zem) o (Zim))¥80(Zmy) Fo(Z(my) 2 L)

where Z, is the sample maximum. It is, of course, clear that with increasing sample size the

above would tend to the point mass at infinity when the true Gy has full support. Actually,

15



as we shall see in the next sub-section, this is what happens even with the estimator derived

with any amount of prior information.

5.2 Inconsistency
Below we prove that the estimator derived above is inconsistent.

Theorem 5.2 Under the standing assumptions the Bayes estimator of G, é, is inconsistent.
More specifically, we have

A

Gn(u) — 1 a.s.(Hp).

PROOF. First note from (6) that the first term goes to Ho(u) by the SLLN. Choose and fix
au € R*. Let the logarithm of the second term be denoted by W, (). Using the fact that

|log(l1 +z)—z |< 2?2V z > 0 we have

g Jo(Zi) I z.<u)

W)= & Rz ) + @) + N ®)
where
| Ro(u) |< W*n(uT — 0 a.s.(Hp),
by the SLLN. Now the first term in (9) can be written as
2Lz & [Fo(Z:)! (Z:) + &(Z:) o Zi)l I z:<
N VAR Y A AT A RN AR e AT A A M G

Now note that

n

3 Iz _ [ dH,(s) _
ZNZ) "] T-H(9)

By assumption of continuity and full support of Hy we have by the Glivenko-Cantelli the-
orem and Theorem 5.5 (due to H. Rubin) of Billingsley (1968) that the above converges to
—log Ho(u) a.s.(Hp). Now all that remains to be shown is that the second term in (10)

converges to zero almost surely. To this end note that this term is less than

= I{Z'<u} 2
= Al].
z; N*(u) [N+(u) (L A1) ]

16



The above can be seen to go to zero a.s.(Hp) by using the assumption that Fy has as support

the whole of R*, and an elementary argument. a

5.3 Discussion and heuristics

In this subsection we try to explain what we think is a very lucid heuristic for the
inconsistency observed in the previous subsection. Before doing so we shall review some of
the literature which study the consistency properties of Bayes Estimators and explain why
we claim the above to be interesting. See Diaconis and Freedman(1986a) for reasons as to
why even a Bayesian should be interested in consistency of his estimators.

We shall start with the old and well known result of Doob (1949) which states under
mild conditions (like existence of consistent estimators) that for almost every value of the
parameter with respect to the prior one has consistency of the Bayes estimators. The crucial
thing to observe is that consistency need not hold for all values of the parameter. Moreover,
since sets with probability one vary with prior and that such sets can be topologically very
bad (nowhere dense) it is desirable to check whether consistency holds for every value of the
parameter. So in the following whenever we say that the Bayes estimator is consistent we
shall mean it is consistent for all values of the parameter. Even in the case when sampling
from a countably infinite population with unknown distribution there does exist priors as-
signing positive probability to every open set such that the posterior is consistent for only a
set of parameters of the first category, see Freedman (1963). Moreover in Freedman (1965) it
is shown that when sampling from countably infinite population with unknown distribution,
for all but a set of priors of the first category, Bayes estimates are consistent only at a set
of distributions of the first category. Even so it is fair to say that Bayes estimators are
usually consistent in finite dimensional problems, see Berliner and MacEachern (1993) for
an exception. In infinite dimensional examples it has been known for sometime now that
Bayes estimators can be inconsistent and sometimes also behave in a rather erratic fashion

see for eg. Diaconis and Freedman (1986a) where it is shown that the Bayes estimate for a
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location parameter oscillates between two wrong values. We should mention here that we
are loosely classifying the dimensionality of the problems, see Hartigan (1986).

The Dirichlet process is a probability measure on the space of all probability measures
such that its weak support is the whole space of probability measures when the parameter
has support as the whole space, see Ferguson (1973). Even though the former is true, the
Dirichlet process assigns probability one to the set of all discrete measures, which of course
is dense in any seperable metric space. There are different proofs of the discreteness of the
Dirichlet, for two of them see Blackwell and MacQueen (1973) and Sethuraman and Tiwari
(1982). So in view of the above and our assumption that the underlying G is continuous,
the result just observed is precisely a form of the phenomenon which is not guarded against
by the Doob (1949).

Now we mention what we believe is the reason behind the inconsistency just observed;
we have not been able to carry out a proof using this heuristic as it seems to be very messy.
Let us consider the situation where one is sampling the Z’s from a survival function Fy - G
where Fj is as above and G is discrete. Now let us suppose that we have G(u) < 1. Then,
if we observe a large number of observations we are bound to have quite a few observations
which are not distinct. Reversing this argument, if we have a large number of observations
and all of them are distinct then we would think that G assigns almost all its mass far away.
Of course, we agree that there is quite a bit of hand-waving here, but after all this is only

an heuristic and the phenomenon that it addresses has been proven in the last section.

6 Concluding Remarks

In this paper we have studied the problem from survival analysis of estimating a sur-
vival function in a sub-class of distributions uniformly stochastically smaller than a given
distribution. It has been shown that the behavior of the GMLE and the Bayesian estimator
derived using the Dirichlet prior in a naive fashion, in the continuous case, is unreasonable,
in the sense that they converge to wrong values. We observe that the proof of inconsistency

is simple and there is a nice heuristic for the phenomenon. In the discrete case, both the
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MLE and Bayesian estimator, using the Dirichlet naively, are consistent.

In Shyamalkumar (1996), addressing the same problem, using a prior which puts all
its mass on the set of absolutely continuous unimodal distributions, we construct Bayesian
estimators for which consistent is exhibited for a large set of G. The prior is based on the
Dirichlet prior; we use the distribution sampled from a Dirichlet as the Khinchine measure of
the unimodal distribution, following Lo (1984). Hence the caveat is that it is the Kullback-
Leibler support which is pertinent to the consistency of Bayesian estimators and not the

weak support.
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