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Abstract

In this paper we approach the problem of studying sensitivity of posterior quantities
to uncertainty in the likelihood. The papers of Lavine (1991) and Pericchi & Perez
(1994) are among those which have considered this problem. We suggest an approach
which applies in situations where the uncertainty in the likelihood can be modeled as
a class which admits a Choquet type representation. An example which falls in the
above category would be when the uncertainty can be modeled as an e-contamination
class with, say, the base model being normal with unknown location and we allow the
contaminants to belong to the class of all symmetric unimodal location models. The
mathematical problem reduces to evaluation of extrema of the expectation of a real
valued function of n variables, the joint law of the n variables being allowed to vary
over all iid laws. Our approach is to get lower bounds for the infimum by evaluating
the infimum over more tractable larger classes. These nested classes are those formed
by the lower dimensional marginals of N-exchangeable laws, the classes decreasing with
increasing N. We show that these infimums do approach the infimum we sought out to

evaluate.
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1 Introduction

In the theory of Bayesian Robustness, one studies the effect of the imprecisions in the
elicited quantities on the posterior measures of interest. Most of the papers in this area
deal with imprecisions solely involving the prior, the primary reason being that the prior is
perceived as the weakest link in the Bayesian approach; see Berger (1985). But it is equally

important to study the sensitivity of the posterior quantities with respect to the likelihood.

Box & Tiao (1962) and Pericchi & Perez (1994) study robustness with respect to the
likelihood, but both are in some sense parametric. Box & Tiao (1962) embeds the normal
family in a larger parametric class by the addition of a new parameter. Pericchi & Perez
(1994) study robustness by finding the variation in the posterior quantities when the likeli-

hood takes one of a few of the standard functional forms.

Much different from the above approaches is that of Lavine (1991), where for the first
time, the class of models considered was nonparametric. Actually, DeRobertis (1978) does
mention a non-parametric neighborhood for likelihoods, but very briefly. By non-parametric
we mean that the parameter space is infinite dimensional. Also Lavine treats both the prior
and likelihood in one stroke. Let {P : § € ©} be the initial choice for the model. Lavine
looks at the prior , say =, as the law of the random variable (8,P) , where @ takes values
in © and P takes values in N(8), where N(6) is a neighborhood of the probability Ps. For
example, if the model is known to be {P; : § € O}, then the usual prior, say m, can be
considered as giving P the degenerate conditional distribution at Py given § = 6. The law
of (8,P) is allowed to vary in a class, which is defined by first selecting the neighborhoods
{N(8) : § € ©} . The conditional law of P given 8 is allowed to vary over all laws which
assign probability one to N(8). The marginal law of 8 is allowed to vary in any standard
classes that is used in the study of Bayesian Robustness with respect to the prior. Lavine
observes that whenever the neighborhoods do not bound densities away from both 0 and oo,

the bounds achieved are trivial. Hence they suggest using density bounded neighborhoods.



As he notes, the extrema are attained at degenerate conditionals. In this case, there is a
sort of model at which the extremum is attained. But these models might violate some
reasonable conditions that one might expect any plausible model to satisfy. It seems that
this inclusion of implausible models does affect the results. However we can avoid this, at

least in some cases.

In this paper we deal with a restricted class of problems, unlike Lavine(1991). Even
though it might be possible to study variations in the prior, along with that of the likeli-
hood, we restrict ourselves to just variations in the likelihood. The class of problems that
we consider includes, for example, the problem when the uncertainty can be modeled as
an e-contamination class with, say, the base model being normal with unknown location,
and the contaminants are allowed to belong to the class of all symmetric unimodal location

models. Note that, in this example, the densities are not bounded away from co.

The main obstacle that one faces, in solving the extremal problem with likelihood ro-
bustness involving classes of likelihoods as discussed above, is the problem of obtaining the
extrema of the expectation of a real valued function defined on IR"™ over the class of all
probability measures on R™ which make the coordinate mappings i.i.d.. This problem can-
not be simplified, as any such probability measure is an extreme point of this subset of
probability measures. What we do is find a bigger class whose extreme points are simple
enough to facilitate the evaluation of the extrema, and small enough for the extrema to be
good approximation to the extrema we sought, in the first place. For this, we use the class
of finite exchangeable probability measures. This method is also useful in other problems,
apart from those arising from likelihood robustness considerations. One such, in the area of

prior robustness, will be given as an example.



2 Notations

" Throughout this paper we shall be working with finite dimensional Euclidean spaces for
the sake of mathematical simplicity though the results hold in the generality of standard
Borel spaces.

Let (R™, B™) denote the n-dimensional Euclidean space with its associated Borel o field.
By R% we shall denote the set of all probabilities on (R™,B") and let Z,, denote the subset
of all probabilities on (R™,B™) which make the coordinate mappings i.i.d.. By P, we denote
the subset of all product probabilities. We shall endow R} with its Borel o field with respect
to the weak star topology, denoted by BX. Note that this is also the same o field as generated
by mappings of the type P —> P(A) where A € B". It is easy to check that Z,, P, are
indeed measurable with respect to this o field.

By S, we denote the permutation group on the first n natural numbers. For ¢ € R™ we
denote by g, for o € S,, the element (2,(1), ...., To(n)) of R™. For 9 a real valued function
on (R",B") we denote by Py, for N > n, the function on (RY,B") defined by 1/~)N(ag) =
S vesy ¥°(2o), where 9° is the function on (RN, BYN) defined by ¥°(z) = ¢¥((z1, ..., Tn)). In
the case when N = n we shall write ¢ instead of ¥y.

We shall call a P € R n-exchangeable if the coordinate mappings form an n-exchangeable
sequence. Recall that Xi,...,X,, n real valued random variables, is said to be an n-
exchangeable sequence if the law of (Xi,...,X,) is same as that of (X,(), ..., Xo(n)) for all
o € S, Let &, denote the set of all n-exchangeable probabilities on (R",B"). It is easy to
check the measurability of £,. For the theory of exchangeability, see Aldous(1985).

3 Main Result

We start by stating some preliminary results.



Lemma 3.1 Let Q be a measurable subset of R} and ¢, be two bounded real valued func-
tions on (R™,B™). Also assume that ¢ > 0. Then

sup JdP _ sup J [ $dPdu(P)
Peg [#dP  Les(o) [ [ ¢dPdu(P)

where S(Q) = {p : p € R and u(Q) = 1}. The notation RX* is represents the space of

probability measures on R*..
The above lemma is essentially the same as given in Sivaganesan and Berger (1989).

Lemma 3.2 Let H, represent the probability measure associated with n draws without re-

placement from the set {y1,...,yn}. Then
&=1{P:P= [ HdQ(y),Q e R}}.
PROOF. Follows from the definition of £,. O

Lemma 3.3 Let 1y and ¢ be two bounded real valued functions on (R™,B™) such that ¢ > 0.
Then .
fpdP P(z)
su = .
PeSpn J#dP  zerr $(z)

PROOF. Follows as an easy application of the above lemmas. O
Our main result is based on a theorem of Diaconis & Freedman (1980) which we state
below. But before that we need a few more notations.
For a P € &, and k < n, we denote the k-dimensional marginal of P by P;. For a
p € Ry*, we denote by P, its barycentre. The notation P, represents the k-dimensional

marginal of P,, when it is well defined. The variation distance ||P — @|| is defined as usual:

IP—@Qll =2- sup |P(A) - Q(A)].
AeBr



Theorem 3.1 Let P € £,. Then there exists a probability p € R satisfying p(Z,) = 1
such that

| P — Pull < 28(n,k), Yk<n
where B(n, k) =1 —n"Fnl/(n — k)!. The probability u depends on n and P but not on k.

It is observed, in Diaconis and Freedman (1980), that S(n,k) < k(k — 1)/2n. See also
Freedman (1977). It was also shown in their paper that the bound in the theorem is sharp.
The above theorem was proved for an arbitrary measurable space and, in this case note that
B is defined in the alternative way, as mentioned before. Now we are ready to state and

prove the main result.

Theorem 3.2 Let ¥ and ¢ be two [0,1] valued functions on (R™,B™). Assume further that
¢ is bounded below by ¢ > 0. Then, for N> n,

@N(@) d
0 < sup =——— — sup [P < 2ﬁ(N2,n).
g€RN ¢N($) pez, [ ¢dP ¢
PROOF. Let
> 0.
PR TP 217

Then we have

sup [ (¥°*—q¢°)dP > 0.
Peéy

Fix P € Ey. By the previous theorem we have the existence of a u € Ry satisfying p(Zn) =1
such that

| [ = 46)(dP. — dPun)| < 201 — 49ll,o BN, m) < 28(N,m)/e.

Note that [(¢* — q¢°)dP = [(¢ — qp)dP,. Hence

0 < sup [(¥°—q¢°)dP

Pe€y

< 28(N,m)/c+ sup [ (= q4%)dP
RERY

< sup [ (g=2B(N,m)/)6)dPun,



which implies

JYdByn 2
su >q—26(N,n)/c".
MERI;V* f¢dPun ( )/

But the L.H.S. is the same as

J¥dP
su
pet, | $dP
by Lemma 3.1. By Lemma 3.3 it follows that

f’(,/}edP B ")ZN(-?)
Pty [ $°AP v dnlz)

Hence the proof. O

4 Application to Bayesian Robustness

Suppose that Y;,Ys,...,Y;, are i.i.d. real valued random variables with common law Pj,
where 6 is the unknown parameter taking values in ©. Although one might feel confident
in Py, it could be possible to give a suitable class of laws, say Fy, such that Py € F5. We
assume that the class admits a Choquet type representation and that the set of extreme
points of Fy can be indexed by a real valued parameter, i.e. £(Fp) = {Q% : « € R}. In
other words, if Py € Fy, then there exists an M € R* such that

Py = / Q°dM (a).
We shall assume further that the class Fj is dominated by a o-finite measure p for all values
of 0. The density of Q% w.r.t. u will be denoted by ¢’. Denote, by F, the set of all families
of probability measures, such that if {P;} € F then there exists an M € R* such that
P = /diM(a) Voco.

Note that F is a strict subset of [y F5. This is not too small a subset as far as statistical
applications go, as the above class includes all scale and location families when the mini-
mal assumptions are satisfied. For example, when we restrict attention to the class of all

symmetric unimodal location densities, we see that Fy, given by

Fo={P:P= / Unif,(- — 8)dM(n), Ma probability},
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where Uni f, denotes the symmetric uniform probability with scale parameter  and median
0, is precisely the family of all uniform distributions symmetric about 8.

The problem that we study is the following. We suppose that the statistician knows that
the set of all plausible models is F, although he cannot ascertain which particular element
is true. He is interested in knowing how much the posterior inferences will vary under this
uncertainty. We assume that the prior on 6, say =, is known. We may also be able to handle
uncertainty in the prior in a simultaneous fashion, but at this preliminary stage we will not
entertain such uncertainty. We assume that the statistician works with squared error loss.

If the statistician is interested in a parametric function, say g(#), then the estimate after

observing n data points yy,¥s, ..., y, under model P is
S 9(0) T, po(y:)w(dF)
Ep(g(0 = — ,
OOW) =TT, oy ()

where 7 is the prior and pg(-) is the p-density of Py. Now, if we assume that P € F, then

the there exists a measure M such that
P = /diM(a) Voco.

We can write the above posterior expectation as

-S9O T, g2 (ya)m(dO) TT7, M (desi)
Be(OI) = =110, o2 () (@0 Iy M(der)

In the above, if we define

G, en) = [ o) [] &, wi)r(d0)

and
GY(ar,..- ) = [ T] a8, (v)m(d0),
=1
then
S S G, 0n) [Tiy M(dew)
E 0 = .
POW) = G (@, ) T, M(das)
Hence

[ T Gy (o, ) Ty M(des)

1=1

E 0 = )
sup Ep(g(Oly) = sup ey T M(daw)

i=

8



and similarly for the infimum. This implies that that the extremal problem can be written
in the form of finding extremum over the class of all i.i.d. laws, and hence the results of
the previous section are very pertinent. In what follows we show some examples where this
method of finding the extremum is applied.

In some cases, as the following example shows, the method gives perfect answers.

Example 1: Let us suppose that X;, X, are two i.i.d. observations from a symmetric
unimodal density with unknown form and location parameter. Let the prior on the location
parameter be the uniform distribution on (-1,1). We try to find bounds for the posterior
probability of the interval (0.0,0.5), after having observed the values 0.25 and 1.0. It fol-
lows from the Khintchine representation (Feller (1965)) that the extremum problem can be

formulated as finding the extremum, as P varies over R, of the quantity

fI[0,0‘5](0)U1(0)Ua1 (ZD] - 0)Ua2($2 - 0) do dP(C!l) dP(az)
JU1(0)Usy (21 — 0)Usy (22 — 0) dO dP (1) dP(cx2) ’

where (z1,z2) = (0.25,1.0). Here, and in what follows, Ug will represent the density of the

symmetric uniform density on the interval (—8, 8). The problem of finding the infimum is
trivial, as it is zero, which is seen to be attained at many symmetric uniform distributions,
uniform on (-0.50,0.50) being one such. The problem of finding the supremum is not trivial,
as we shall see. A lower bound for the supremum is obtained by varying over all degenerate

P. This quantity is

L Tpo(0)Us(6)Ua(0.25 — 0)U(1.0 — 0) d,
R JUL(0)Ua(0.25 — 8)Ua(1.0 — 0) df

which can be easily seen to be 0.5. Similarly, varying over all independent, but not necessarily
identical models yields an upper bound for the supremum, which turns out to be 1.0. Next
we try to use the method of the previous section, that is we first find the supremum over the

set of all 2-exchangeable models. This leads to the evaluation of the following supremum:

sup 1 L00a(@U1(0) g Uil — 0)Uay(z2 — 0) db
(al,az)ER"' xRt f Ul(a) ZI Uai($1 - O)Uaj (:Ez —_ 0) do ’

where 7 = {(1,2),(2,1)} and (z1,22) = (0.25,1.0). It can be seen that this supremum is

2/3, which gives us an upper bound for the original supremum. Now we shall show that

9



a lower bound of the supremum is in fact 2/3, which completes the solution. Let ag,ar
be two positive real numbers and let ag < 0.25. The model that we assign for X; would
be Uiy,y) where Y takes values a5,y with equal probability. With this assignment the

posterior probability is given by,
1 + 4aL
4 -+ 601[,7

after some simplifications for large values of ay. It follows that, as we move oy, to infinity,

the posterior probability would approach 2/3 from below. D

Next we shall consider a more traditional statistical problem. Here, unlike the previous

example, we do not arrive at the exact infimum but are quite close.

Example 2: Suppose that X, X3, X3, X4 are four i.i.d observations from a symmetric
unimodal location model. The statistician’s guess for the likelihood is the normal likelihood.
He models uncertainty in the likelihood by the following nonparametric class of models, which
we denote by M. By nonparametric, we mean that there is no obvious finite dimensional

parametrization of the models in the class. The class M is given by

{(PB){oeR} : P =0.9Np + O.IQG, (Qe){een} S Msu},

where the class of models M, i1s described below:

M = {(Qo)ppery : Qo = Q(. — 0),Q € Q}

where Q is the class of all symmetric unimodal probability measures on the real line. In
words, the uncertainty in the likelihood is modeled by an e-contamination class with the base
model being normal with unknown location and unit variance and the contaminants allowed
to belong to the class of all symmetric unimodal location models. The statistician assigns,
as the noninformative prior A, the Lebesgue measure on the real line. He is interested in
a confidence interval for the unknown location and would like to know the infimum of the
posterior confidence for the 95% posterior confidence interval derived in the usual manner

by assuming that the model is exactly the base normal model. The mathematical and
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computational problem for evaluating the supremum, though mathematically similar to that
of the infimum, is of minimal interest.

Note that, by the Khintchine representation, we know that every symmetric unimodal
distribution can be represented as a mixture of symmetric uniforms. So we do have the
required Choquet representation.

The desired lower bound on the infimum was computed using the above described method.
We have tabulated the results using this method under the column titled ‘Exchangeable’. We
have also evaluated the infimum of the posterior probability over the class of independent (but
not necessarily identical) symmetric unimodal contaminants in order to see the improvement

obtained by our method. These results are tabulated under the column titled ‘Independent’.

x = (21,2, %3, 24) | Independent | Exchangeable
(-1.0,-0.5,0.5,1.0) 0.886 0.916
(-2.0,-1.0,1.0,2.0) 0.742 0.757
(-1.0,0.0,0.1,3.0) 0.670 0.718

Table 1: Infimum Posterior Probability of the 95% Confidence Interval.

The numbers in the second column were seen to be very close to the infimum that would

be obtained using a mixing distribution with mass at three points. O

The following is an example of a problem in Bayesian robustness with respect to the
prior where the method of the paper is also useful.
Example 3: This example is from Berger & Moreno (1991). Let X = (X;,Xz) be a
N2((61,05),I) random variable, and suppose the base prior density o of the form

7T0(91, 92) = 7701(91)7T02(92)

is elicited, where mq; are the N(0,2) densities. We are interested in studying the robustness
of the posterior probability of Hy : §; < 0, to departures from the base prior. In Berger &
Moreno (1991), they study the sensitivity of the above probability in the class I'rc which is

11



defined as

Lo ={m:7(01,0:) =[(1— €1)7o1(61) + e1q1(01)][(1 — €2)mo2(62) + €292(02)], 41,92 € Q},

where Q denotes the set of all probability measures. That is they assume prior independence
to hold. They also have tabulated the results when you assume virtually nothing about the

contaminants, i.e. when you model uncertainty by I'c, which is given by
I'e = {7‘-(01702) : 71'(91,02) = (1 - 6)7‘-0(01702) + eq(01,02),q € Q}

Here, we find the ranges of the posterior probability of the above set when we model the

uncertainty by I'g, where

Le = {7 (61,6;) : w(61,02) = (1 — €)mo(61,02) + eq(81)q(02), 9 € Q},

or by I'yy, where

Ty = {n(61,02) : 7(61,02) = [(1 — e2)701(01) + €1q(01)}[(1 — €2)m02(02) + €29(62)], 9 € Q}.

As is clear, these classes assume the identical nature of the prior opinion. It is clear that I'rs
is a subset of ;¢ and that I'g is a subset of T'c. It is also easy to see that I'c and I'f¢ have
only 7o in common. We assign the value 0.106 to both ¢ and ¢; and the value 0.2 to €. For
the reason behind the odd value of ¢;, see Berger & Moreno (1991).

These new classes are meaningful when apriori it is felt that the distributions of the two
parameters are the same. By imposing this condition, one also brings in a sort of objectivity
to the bounds.

From table 2 it is clear that assumption of identical marginals does shrink the bounds
dramatically when the data is not too supportive of Hy.

The notations used in the table below are; Pr = infrer, P™(Hr, |X),

P¢ =sup,er, PT(Hr|%), Pg = infrer, P (Hq %), Pg =sup,er, PT(Hr,|x),
Pjc = infrer, o P™(Hr|x), Pic = SUPrer;c P™(Hy,|x), Py = infrer,, P™(Hnr|x),
and Pyr = sup,er,, P™(Hr |X).

12



x = (z1,72) | P™(Holz) | (Po,Pc) | (Pe,PE) | (Pic,P1c) | (Pir,Pir)
(-0.1,0.1) | 0546 | (.313,.740) | (.527,.552) | (.408,.680) | (.537,.557)
(0.2,02) | 0591 | (.342,.768) | (.553,.602) | (.508,.672) | (0.573,0.613)
(10.50.5) | 0718 | (.439,.845) | (.633,.740) | (.646,.786) | (.679,.763)
(-0.8,0.8) 0.822 (.552,.908) | (.716,.845) | (.766,.873) | (.772,.870)
(-1.0,1.0) | 0.876 | (.632,.924) | (.773,.888) | (.792,.934) | (0.826,0.919)
(-1.5,1.5) | 0.958 | (.821,.973) | (.894,.963) | (.913,.981) | (.925,.979)

Table 2: Ranges of the posterior probability of Hy
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