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Abstract

In this article, we introduce the noninformative prior for the model selection. The nonin-
formative prior developed for each model separately is determined only up to a multiplicative
constant, so it can not be used for the model selection. However, starting from this prior,
we obtain the completely determined noninformative priors for the models simultaneously.
This prior is based on the standard experiment, which is a subjective element. However, we
can apply the widely accepted notion of the minimal sample principle. Three related topics

with this noninformative prior will also be discussed.

1 INTRODUCTION

In this article, we discuss the model selection problem from Bayesian point of view, using
the noninformative prior.

Let M = {My,---,M,,} be the set of statistical models about the observable random
variable Z. In this article, all tandom variables are shown to be with tilde. Each model M;
accompanies its own parameter space ©; which is a singleton or an open subspace of R4, The
model M; is called simple when ©; is a singleton and it is called composite otherwise. Under
M; € M and 0; € O;, & has a probability density p;(z|f;) w.r.t. a common underlying measure
m(-) on rng(%,) (range of ).

Let p;(0;) be the usual noninformative prior on @; w.r.t. Lebesgue measure on R
when only M; is considered. This prior is determined only up to a multiplicative constant.

Starting from p;(6;), we derive the noninformative prior for the model selection r;(8;), which



is completely determined. It is not necessarily 7;(8;) o p;(6;). In this article, p;(6;) is called
the initial (noninformative) prior and ;(#;) is called the noninformative prior for the model
selection.

It is impossible to determine the multiplicative constants directly. Thus some intermediate
concepts have been proposed to obtain the posterior probability. See Spiegelhalter and Smith
(1982), Suzuki (1983) and Klein and Brown (1984), although these ideas are not satisfactory.
See Iwaki (1996) for these methods and other modified Bayesian approaches.

In this article, we introduce the standard experiment as an intermediate concept to deter-
mine the prior completely. The choice of the standard experiment is basically subjective but the
experimenters are supposed to have some intuition about it. Also the widely accepted notion of
the minimal sample principle can be applied.

In Section 2.1, the motivation and the basic notion are introduced. In Section 2.2, examples
are given. In Section 2.3, it is discussed how to choose the standard experiment. In Section 3.1,
the problem of robustness to the choice of the standard experiment is discussed using the linear
regression model as an example. In Section 3.2, it is discussed how to incorporate prior partial

knowledge into the prior distribution. In Section 3.3, Lindley’s paradox is discussed.

2 THE CONCEPT OF NONINFORMATIVE PRIOR FOR
MODEL SELECTION

2.1 Definition and its Motivation

Let ! be a random variable whose distribution is determined by M; € M and 6; € ©; and
is conditionally independent of # under M; and 6; for j = 1,---,m. This random variable Z/
is called the standard experiment. The choice of the standard experiment is subjective but we
discuss how to work intuition for this choice later in Section 2.3.

For simplicity, we assume that all models are composite for the time being. If the real-

I

ization of the standard experiment #/ = 2! were obtained before the real data Z is observed, it



would be used to obtain the prior density under M; and z’ by

n_ p(8;)p;(=1]6;)
PG ) = 10, )0, (0,)0; @1

provided that
/@ p(a16;)p;(6;)d6; < oo. (2.2)
Then, using this density as the prior together with p(};), the probabilities of the models are

obtained by
p(M;]2;27) o p(M;) /e 3 (216;)p(6;1M;, <")de);. (2.3)

Usually, p(M;) = 1/m.
Since the standard experiment &’ is not observable, this probability can not be obtained.
However, we introduce the noninformative prior the result of which agrees with this imaginary

solution in the following sense.

Definition Let
7;(8;16;) = E[p;(8;1&")|M;, 6;]. (2.4)
We call

m;(0;) = p;(0;10;), (2.5)

the noninformative prior for the model selection.
Note that p;(6;|67) is a proper density.

Ezample Suppose that Z'|M;,0; ~ Ezp(8; ') and p;(0;) < 6;'. Then

B;(0;10;) = E 3" exp (-03")|M;,0;)

= / 2’ exp (—0;2") 6} exp (—0;:131) dz’
0
o
(6; +96;)



Thus
i (0;) = - (2.6)

This prior has the following asymptotic property. We denote the observable random vari-
able with the sample size n by Z(,) = (&1, -, ). The probability distribution of (Z;,---,%,,--*)
given M; € M and 0; € O; is denoted by P;(:|4;). In the following theorem, the suffix j is omit-

ted for simplicity.

Theorem Assume that for any 6* € © and ¢ > 0,

lim fU(o-,s)c p(Z,|0)m(0)db _
n->00 fU(ot’E)p(fIv)nla)ﬂ'(O)da

where U(6*,e) = {# € O : ||§ — 6*|| < €}. Also p(6}6*)/w(#) is assumed to be bounded and

0, (P(|#")—a.e.). (2.7)

continuous. Then

[ pGeml0)p(618")d8

= [ pEmlOm(@)dsL+5(1),  (B(167) - ae), (28)

for any 6} € ©;.

The proof of the theorem is in the Appendix. See Berk(1966,1970), Sono(1986) and
Dmochowski (1995) for the assumption (2.7) , which implies that the posterior probability mass
on O accumulates in the neighborhood of the true value. This result shows that the method
proposed by Iwaki (1996) agrees with the method here asymptotically. See Proposition 1 in
Iwaki (1996).

Once 7;(0;) is obtained, the posterior probability is obtained by

p(l0) o [ py(al6s)m;(6,)d8;, (29)



for the composite model and

for the simple model M; with ©; = {6.}.

If the imaginary prior p;(6;]Z’) is reasonable, then its expectation under the true value,
;(0;167), is reasonable. The noninformative prior 7;(0;) is desirable, because its marginal like-
lihood asymptotically agrees with the marginal likelihood based on p;(0;|6;) under the suitable

conditions.

2.2 Examples

Ezample 1 This is an example from Akaike (1991). Let & = (#1,---,&,) be anii.d. sample from
M; : N(0,0}), j = 1,2, where 6 € R is unknown while o; and o, are known. If the standard

experiment is /| M;,0 ~ N(6,00) and the initial prior is p;(f) o« 1, then the noninformative

prior is
1
(0) = j=1,2 2.11
N0 =57 =12 (21)
and the posterior odds ratio in favor of M, is
O n-1 1 s . n -
—= exp | —z (072 —057) D (z: — )% ). (2.12)
01 2 i=1

where 7 is the sample mean. This result does not depend on the choice of oo and the posterior

odds ratio is always 1 when n = 1. A Comment is found in Section 2.3.

Ezample 2: Normal distribution Assume that & = (%1,+-,&,) is an i.i.d. sample from
N(p,771). The models are M; : (p,7) € {(0,1)}, Mz : (p,7) € R X {1}, M5 : (p,7) €
{0} x (0,00) and My : (p,7) € R X (0,00). The initial noninformative prior is supposed to
be pa(p) o 1, ps(r) o« 77! and ps(p,7) < 7*7'. The standard experiment # = (81,8l is
supposed to be a two dimensional random vector with distribution #|u,T ~ Na(uee,771L;)

where ¢, = (1,---,1) € R and I, is the identity matrix of order n.



Then the noninformative priors for the model selection are

1
ma(p) = Wird (2.13)
my(T) = %, (2.14)
and
I'(a+1) 1

7['4(#, T) = 2°’+3/27TI‘(O£ + 1/2) \/_7—_' (2'15)

The posterior probabilities of the models are

p(M;|z) x exp (—% Zn::cf) , (2.16)

p(My|z) %exp (_% i(x - z)?) , (2.17)

n —-nf2
p(My|z) o 2=/ (n/2) (Z ) , (2.18)

i1

and

n —n/2
p(M,|z) F(ari"lB%Q ﬁQ"”—a-l (Z(wi —5)2) : (2.19)

What is interesting is that m,4(u, ) o< 771/2 for all a.

i=1

Ezample 3: Ezponential, Lognormal and Weibull We assume that & = (&1,---,%,) is
an ii.d. sample. It is also assumed that the distribution of Z; is exponential with mean 61
under M;, the distribution of log #; is normal with mean p and variance 7! under M, and
&“ is exponential with mean $~! under Ms. The initial priors are assumed to be p;(8) x 61,
pa(p,7) o 771 and p3(e, B) x a”!B~L. It is supposed that the standard experiment is the two
dimensional vector #/ = (&, #]) and its distribution is the same as (%, #,) under each model
and each parameter.

Then the noninformative priors for model selection are

n(0) = o, (2.20)



1 1

"l T) = Safagsrs (2.21)
and
ms(@ ) = Kgl_;’ (2.22)
where
K = % 2129 €Xp (—(21 + 22)) |log 2 — log Zzl dzdz,
(0,00)2
~ 0.111.
The probabilities of the models are
3T'(n
p(Mifz) o 815" 3 (2.23)
I'(n/2) il o2
pdle) (H?=1zz-)27r"/2+1\/ﬁ(§l°g 2 — B, (2.24)
and

p(Ms|z) x KT'(n) /Ooo (1_:]1: a:,-) (Z:;xf‘) " tda. (2.25)

where [ is the sample mean of log a;s.

Proschan (1963) presents the following 30 time intervals (in hours) between failures of the
air conditioning system of an airplane: 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20,
5,12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95. For this data, we obtain the posterior
probabilities: p(M;|z) = 0.663, p(M;|z) = 0.200 and p(Ms|z) = 0.138.

2.3 Choice of the Standard Experiment

The noninformative prior for the model selection 7;(;) is defined by relating it to the imaginary
probability p(6;|M;,z’) through (2.4) and (2.8) . Thus it may be justified only if the imaginary

analysis is rational.

I

In the imaginary analysis, it should be noted that the information & = z' is neglected

for the model probability p(M;), while the conditional distribution, p;(6;|z’), is affected by

I

#T = z’. In order to form the prior conditional distribution, it is desirable that information



from the standard experiment is large. However, it is ridiculous that the model probabilities are
not affected by the large information, while the extreme results tend to be avoided under the
small information. Experimenters are supposed to have their own personal judgement about
whether a statistical experiment is trivial or not. Thus the standard experiment should contain
as much information as possible, subject to the information being small enough that it would
not affect the assessment of the model prior probabilities.

Widely accepted criterion is the “minimal sample principle”, though it is differently ap-
plied to different methods. See Berger and Pericchi (1995, 1996), Iwaki(1996), Jeffreys (1961),
Kass and Wasserman (1995), Klein and Brown (1984), O’Hagan(1995) and Spiegelhalter and
Smith (1982).

Definition Let p;(8;) be an initial noninformative prior. The sample z is called to be
proper if
[ piteltipi6)dt; <00, (2.26)

for any M; € M and minimal if it is proper and no subset is proper.

For our method, the minimal samples are assumed to be the realizations of the same
distribution. Then this principle may be applied so that the standard experiment have the
same distribution as the minimal samples under each model and each parameter. Even if the
assumption does not hold, the principle may provide guidelines for the choice of the standard
experiment. This approach has been illustrated in the example 2 and the example 3 in Section
2.2. Note that the same model may have the different standard experiments depending on the
whole structure in which it is contained. If M; in Example 3 in Section 2.2 is compared with,
e.g., simple models, then 7,(6,) is given by (2.6) instead of (2.20) .

This idea should not be applied mechanically. In Example 1 in Section 2.2, if it is applied

to the problem, the posterior odds ratio is

(2)" exp (—% (072 - 05%) Zn: (z; — j)2> . (2.27)

01 i=1



Thus if 03 /0, is very large, the posterior odds ratio is also very large for any data even if n = 1.

Thus the standard experiment should be chosen as in Section 2.2.

3 FURTHER DISCUSSIONS
3.1 Robustness to the Standard Experiment
Let § be an observable n-dimensional random vector and assume that
| M;, B, T ~ No (X85, 7' L) (3.1)
where X; is an n X k; matrix of rank k;. The standard experiment is chosen to be
G| M;, B, ~ Ny (X185,77 L, ) (3.2)

where ng = max{k; : j = 1,---,m} + 1 and X is an no X k; matrix of rank k;.

One may choose X to be

I,
xh = l ] : (3.3)
0

However, one may choose X f to satisfy the relation that
nXP' XP = noX;'X;. (3.4)

In terms of the Fisher information, the information of the standard experiment is ng/n times
as much as the information of the actual data under (3.4) . In the ii.d. case, the standard
experiment based on the minimal sample principle satisfies this relation. Thus (3.4) is thought
to be generalization of this principle.

Once X JI is chosen, the noninformative prior for the model selection is

Tkil2-1 o pt/2
Ti(BisT) = Srer T B ((ng = ;)/2, (mo = ;)/2) XXy (3.5)
The posterior probability is given by
p(M;ly,X) o 2ri1 |X’4T,X-"II1/2
! B((ro — k)/2, (ma— )72 | %,/ X, |72
lv-x:8]" (3.6)

9



where £ is the MLE of §.

When [ types of the standard experiments, #7,.--Z, are considered, the subadditive

probability is defined to be
B(Mjlz) = min{p(MjlxaIk) 1k = 17"'7l}a (37)

where p(M;|z, I}) is the posterior probability based on the standard experiment #'*. The quan-
tity

> p(Mile), (39)

could be an index of the similarity among the standard experiments. Apart from the philo-
sophical arguments concerning the subadditive probability, the quantity in (3.7) may be useful
practically as a summary of the results. For philosophical discussions, see Walley (1991) and its
reference.

We specialize the formulas to the ANOVA1 model. We consider 2 models whose explana-

tory variable matrix is X; = tp,4n,, and
ln, O
X2 = .
0 ¢,

Fig. 1 shows the performance of the posterior probabilities of the modell versus n, with
ny = n?. The true values are §; = (0,0.4) and 7 = 1; thus M is false. The solid line is for (3.3)
, the dotted line is for (3.4) . The other line is for the quantity (3.8) . In this example, it always
holds that p(M:|z) = p(Mi|z, ;) and p(Ms|z) = p(M:|z, I2).

3.2 Partially Noninformative Prior

Let # be an observation whose distribution is parameterized by (8, 7). The models are M; : § =
6, and M, : @ /0,. In this case, it may happen that the value 6, is preferable than other values

even under the model M,, since this model selection problem itself is posited based on some

10



Figure 1: The Posterior Probabilities of M, based on the Different Standard Experiments and

the index of their Similarity versus n, when M, is False: I;: (Solid Line ), I,:( Dotted Line ).

prior information which suggest the value ;. This partial prior knowledge is incorporated into

the model M, by defining the prior based on the standard experiment Z' by
T2(0,7) = E [po(8, 7|37)|60, 7], (3.9)
while
(1) = E [p(7]37)]60, 7] - (3.10)

Ezample 1 Let & = (%,,---,%,) be an i.i.d. sample from N(6,1). Let M, : § = 6, and
M, : 0 € R. In this case dim(7) = 0. The standard experiment is supposed to be Z'|M,,0 ~
N(6,1). The initial prior is supposed to be ps(#) o« 1. Then the prior based on the standard

11



experiment is

72(8) = #exp (~%(9 - 90)2) . (3.11)

Ezample 2 Let 3 = (%,,---,%,) be an ii.d. sample from N(0,71). Let M; : § = 6, and
M, : 6 € R. The initial prior is supposed to be py(8,7) o 7~*. If the standard experiment &’ is

a 2-dimensional random vector such that
#|\ M3, 0,7 ~ Ny(015, 1), (6,7) € R x (0,00), (3.12)
then the prior based on the standard experiment is

1 T 2
71'2(0, T) = mexp (—5(0 - 00) > . (3.13)
However, if we choose the standard experiment #' = (&{, Z]) such that
&'\ My,0,7,%, = o} ~ N(8, (z1) ), (3.14)
and
1| M, 0,7 ~ Gamma (%,27’) , (3.15)

for (8,7) € ® x (0,00), then

a2y -3/2
Ta(0,7) = % (1 + 7'(0—4ﬁ)—> . (3.16)

If the prior independence between 6 and 7 is preferred, the latter analysis is favorable because

it holds that
p(8,7le’) = p(6lz")p(r|e"), (3.17)

for the latter standard experiment.

12



3.3 Lindley’s Paradox

Let & = (&1,--,%,) be an ii.d. sample from N(f,1). The models are M; : # = 0 and
M, : 6 € ®. If the conditional distribution under M, is assumed to be p(8|M2) = n(6|p,7"*)
with p(M;) = p(M,) = 1/2, then the posterior odds ratio is
vn+T < 1 ( _9
exp | —= [ nZ° —
\/,T_

2
where 7 is the sample mean. If 7 — 0, this ratio goes to oo for all data. Thus even in the proper

(5 - u)?)) : (3.18)

case, if the variance of the prior distribution 7! is very large compared with the variance of
the sample mean Z, i.e. 7°! > n~l, it tends to overwhelm the information from data. This
phenomenon is caﬂed Lindley paradox by Shafer (1982), though Lindley (1957) pays attention
to the behavior when n — oco. Although this is a controversial problem, it may be interesting
to consider it from the information theoretic view.

We consider the case where the proper conditional distribution p(6;|M;) is given based on
the evidence from other sources. When all the models are simple, the maximum entropy rule or
other information theoretic arguments (e.g.,Bernardo (1979)) may yield p(M;) oc 1. However, if
some models are not simple, this is not the case. Indeed, in our discussion, we can define the

entropy w.r.t. m;(6;) to be

- ip(Mj) log p(M;) + ip(Mj)Ent(Mj), (3.19)
where
() = - [ 206511 tog 25, (3.20)

for the composite models and Ent(M;) = 0 for the simple models. Note that the underlying
measure and the conditional probability distribution are both one point probability measure
for the simple models. Given p(8;|M;), the most uninformative prior distribution on the whole
structure is obtained by maximizing (3.19) w.r.t. p(M;),---,p(M,,) under the constraint that
> je1 p(M;) = 1. The solution is

p(M;) x exp(Ent(M;)). (3.21)

13



Ezample Let us return to the problem above. The noninformative prior is given by

T5(#) = 1/2+/m. The prior probability of the models are given by p(M;) « 1 and

p(M;) x exp (%) \/LF (3.22)

Then the posterior odds ratio in favor of M; is

exp (12g_22—_1) Vn+ Texp (—% (n:i2 - nTZT(E - ,u)2)> . (3.23)

Thus Lindley’s paradox disappeared in the sense of Shafer (1982), while it does not disappear
in the sense of Lindley (1957).
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A APPENDIX:PROOFS OF THE THEOREM
Let u(6) = p(0]6*)/7(6). Let

p(&) = [ 2lan|0)p(616%)a0,

and
q("i(n)) = /(:)p(j(n)|0)7r(0)d0'

Let

~ fU(G‘,e)C P(E(n)|0)7(6)df

a(n,e) = ~ .

fU(a.’E)p(:D(n)Io)?{'(O)do

Let

1(e) = inf{w(8) : 0 € U(6",¢)},
and

©a(e) = sup{u(f) : 0 € U(0%,¢)}.

17



Since u(#) is continuous, we have
lim wi(e) = u(6"), (i=1,2).

Since u(0) is bounded, we have & = sup{u(8)|6 € ©}. Then it holds that

v1(e)

WQ(‘i(n)) < P(i(n))-

It also holds that

P(Em)) < @2(e)(1+ ad(n,€)p1(e) ™ )a(En))-

Thus
o) _ plEw) - L
A < BE < )1+ 8 hn(e) )
Thus
on(e) < lim ZE@) < o) (P(16%) — ae.).

n—oo q(fy(n))
Since this holds for any ¢ > 0, it holds that

lim Iq)g—inii —u(@) =1, (P(|0") - ae).
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