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We study the problem of selecting the most reliable Poisson population from among k
competitors provided it is better than a control using the nonparametric empirical Bayes
approach. An empirical Bayes selection procedure is constructed based on the isotonic
regression estimators of the posterior means of failure rates associated with the k Pois-
son populations. The asymptotic optimality of the empirical Bayes selection procedure
is investigated. Under certain regularity conditions, we have shown that the proposed
empirical Bayes selection procedure is asymptotically optimal and the associated Bayes
risk converges to the minimum Bayes risk at a rate of order O(exp(—cn)) for some ¢ > 0,
where n denotes the number of historical data at hand when the present selection problem

is considered.
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1. Introduction:

In the research and development stage, an experimenter often confronts the problem
of selecting the most reliable design from among several competing designs. Usually, the
populations that are compared are the life length distributions of the designs. The most
reliable design is defined as the one with the longest mean life. The problem of selecting
the most reliable design has been studied in the literature. The readers are referred to
Gupta and Panchapakesan (1988) for a comprehensive survey of selection procedures in

reliability models.

Consider & types of competing designs 7, ..., 7%, which are put on life tests. Suppose
in case of a failure, the failed design is immediately replaced by the same type of design.
It is assumed that the failure times of type ¢ design are exponentially distributed with an
unknown failure rate 8;, and these failure times are mutually independently distributed.
Let 0[1) < ... < Op) denote the ordered values of the failure rate 6y,...,0;. The design
associated with the smallest failure rate 0[;) is called the most reliable design. Over a
fixed common time interval [0, 7], we let X; denote the number of failures of type i design.
Then, X; follows a Poisson distribution with occurrence rate 6;. With this sampling
scheme, Dixon and Bland (1971) derived a Bayes solution to the problem of ranking the
failure rates 61,...,0;. Gupta, Leong and Wong (1979) have developed a subset selection
procedure for selecting a subset containing the most reliable design. Alam (1971) and
Alam and Thompson (1973) have also studied selection procedures for selecting the most

reliable design based on inverse sampling observations.

Let 6y be a specified control level. Design 7; is said to be better than the control 6,
and acceptable if 8; < fy; otherwise, 7; is said to be bad and should be excluded. In many
practical situations, an experimenter makes a selection only when the most reliable design
is better that the control 8y. For example, let 6y be the failure rate of the currently used
design. An experimenter may make a selection from among the k competitors and replace
the currently used design by the newly selected one provided the newly selected design is
better than the level 6. Otherwise, the experimenter may select none and continue using

the current design.

Consider a situation in which one will be dealing with repeated independent selection



problems. In such instances, it is reasonable to formulate the component problem in the
sequence as a Bayes decision problem with respect to an unknown prior distribution on the
parameter space. One then uses the accumulated historical data to Vimprove the decision
procedures at each stage. This is the so-called empirical Bayes approach (see Robbins
(1956, 1964)). Empirical Bayes procedures have been derived for subset selection goals
by Deely (1965). For recent developments of empirical Bayes selection procedures on the
research area of ranking and selection, the readers are referred to Gupta, Liang and Rau

(1994, 1995), and the references quoted there.

In this paper, we study the problem of selecting the most reliable Poisson population
provided it is better than a control using the nonparametric empirical Bayes approach. The
paper is organized as follows. The selection problem is formulated in Section 2. For the
loss function (2.1), we derive a Bayes selection procedure, which is based on the posterior
means of the failure rates 6;,7 = 1,..., k. The empirical Bayes framework of the selection
problem is described in Section 3. Based on the isotonic regression estimators of the
posterior means of the failure rates, an empirical Bayes selection procedure is constructed.
We study the asymptotic optimality of this procedure in Section 4. It is shown that
under certain regularity conditions, the proposed empirical Bayes selection procedure is
asymptotically optimal and its Bayes risk converges to the minimum Bayes risk at a rate
of order O(exp(—cn)) for some positive number ¢, where n denotes the number of the

accumulated historical data at hand when the present selection problem is considered.

2. Formulation of the Selection Problem and a Bayes Selection Procedure

Consider k(> 2) independent Poisson populations =1,..., 7, with unknown occur-
rence rates 01, ..., 0k, respectively. Let oy<...... < 0[] denote the ordered values of the
parameters 0,,...,0;. It is assumed that the exact pairing between the ordered and the

unordered parameters is unknown. The occurrence rate §; may be viewed as the failure
rate of type 4 design, as described previously. Therefore, in the following, a population m;
with 0; = 0[;) is considered as the most reliable design. Let 6y be a known pre-specified
control level. A population m; with 0; < 6, is said to be better than the control 6y and
is acceptable. Otherwise, population =; is said to be bad and not acceptable. Our goal is

to derive empirical Bayes procedures to select the most reliable Poisson population which
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should also be better than the control 8y. If there is no such population, we select none

and exclude all k£ competitors as bad.

Let Q = {§ = (61,...,0k)| 6; > 0, i = 1,...,k} be the parameter space and let
A = {a = (ag,a1,...,a5)| a; = 0,1;¢ = 0,1,...,k, and Zk: a; = 1} be the action space.
For an action g, when a; = 1 for some i =1,...,k, it mea,zr_l——sothat population ; is selected
as the most reliable design and considered to be better than the control 8y; when ag = 1,
it means that all the k populations are excluded as bad compared with the control 8, and

no selection is made. We consider the following loss function: For § ¢ Q anda € A,

k
L(9,a) = _ aif; — min(6, 0o). (2.1)
i=0
For each i« = 1,...,k, let X; denote a random observation arising from a Poisson

population m; with occurrence rate §;. Without loss of generality, we assume that the
fixed common time interval is [0,1]. That is, T = 1. Thus, conditioning on ;, X; has a

probability function f;(z|6;), where

fi(z|0;) = exp(—6;)67 /=, . =10,1,2,... (2.2)

It is assumed that 6; is a realization of a random variable ®; which has an unknown
prior distribution G; over (0, c0). The random vectors (X;, ©;),7 = 1,...,k, are assumed

to be mutually independent.

Let X be the sample space generated by X = (X3i,...,Xk). A selection procedure
9 = (80,01,...,0k) is defined to be a mapping from the sample space X into the product
space [0, 1]°", such that for each geX, the function d(z) = (6o(z),01(2), - - ., 0k(z)) satisfies
that 0 < d;(z) < 1,i=0,1,...,k and Xk: 0i(z) = 1. That is, for each ¢ = 1,...,k,6;(z)
is the probability of both selecting ; ;:Othe most reliable population and also as being
better than the control 6y; and dp(z) is the probability of excluding all the k populations

as bad and hence selecting none.

Let C be the class of all selection procedures. For each § ¢ C, let R(G, ) denote its
) _
associated Bayes risk, where G(§) = [] Gi(0;). Then R(G) = (isnf R(G,§) is the minimum
i=1 eC
Bayes Risk among the class C. A selection procedure, say d¢, such that R(G, §¢) = R(G) is
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called a Bayes selection procedure. We consider only these priors for which f0°° 0dG;(0) <
oo for each ¢ = 1,...,k so that for each selection procedure §, R(G,§) is always finite,

which insures the selection problem to be meaningful.

Based on the preceding statistical model, the Bayes risk associated with the selection

procedure § is:

k
RG,8) =YY 6(z) / 0:1(20)dG(9) — C
@eX =0 Q (23)

k
=2 !Z 6i ()i (zi) + 60(:5:)90] flz) - C

ZTeX Li=1

k k
where f(zlf) = 1 fi(ailt), /@) = [ 20, = fomin(o, 60)dG() and fi(s:) =
[ fi(x:6)dGi(6) = h;(x:)(zs!)~" is the marginal probability function of X;,hi(z;) =
[ exp(—0)6*:dG;(9),

Note that v;(z;) is the posterior mean of ©; given X; = z;.

From (2.3), a Bayes selection procedure §¢ = (6o, - - -, dgx) can be obtained as follows:

Foreach z ¢ X, let
where 1o(zo) = 6. Define

iq = i¢(z) = min{i|ieA(z)}, (2.6)
and for each 7 = 0,..., k, define

1, ifi=1
S — y G .

ci(2) { 0 otherwise. (27)
From (2.3), one can see that g is a Bayes selection procedure. Also, it should be

noted that any selection procedure § satisfying > &;(z) =1 for each z ¢ X is always
icA(T)



a Bayes selection procedure. The (minimum) Bayes risk is R(G, §¢) since this risk is the

minimum, by construction, where

k
R(G,dq) = Z !Z 5Gi(‘§)¢i($z‘):l flz)-C

TeX Li=0

=Y %is(@ig)f(z) - C.

TeX

(2.8)

3. Empirical Bayes Selection Procedures

It should be noted that the Bayes selection procedure § depends on the prior dis-
tribution G. Since G is unknown, it is not possible to implement the Bayes procedure §¢
for the selection problem at hand. In the following, it is assumed that certain historical
data from each of the k populations are available. In such a situation, the empirical Bayes

approach is adopted.

3.1. Empirical Bayes Framework

For each ¢ = 1,...,k, let (X;;,0;;),7 = 1,2,... be random vectors associated with
population m;, where X;; is observable while ©;; is unobservable. Note that ©;; stands for
the failure rate of the design belonging to 7; at stage j. It is assumed that ©;; has a prior
distribution Gj, for all j = 1,2,..., and conditioning on ©;; = 0,5, X;; follows a Poisson
distribution with occurrence rate 6;;; and (X;j,0;;),: =1,...,k,5 = 1,2,... are mutually
independent. At the present stage, say stage n + 1, let X;(n) = (X;1,...,Xin) denote
the accumulated historical data associated with 7;, and let X; = X; n+1 be the present
random observation arising from 7;, and ; = 6; 41 be a realization of Oin+1,t=1,...,k.
Let X(n) = (X1(n),..., Xk(n)) and X = (X1,...,Xx). At stage n + 1, we want to select
the population associated with };] provided that 0p1) < Bo using the loss function (2.1).

By (2.5)-(2.7), a natural empirical Bayes selection procedure can be derived as follows.
For each ¢ = 1,...,k, based on the accumulated past data X;(n) and the present obser-
vation X; = x;, let ¥;n(2;) = Yin(zs, Xi(n)) be an empirical Bayes estimator of Yi(z;).
Then, let

An(z) ={t=0,1,..., k[t (z;) = olgnjiélk Yin(z;)} (3.1)
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where 1o, (z¢) = 6. Define
in = in(z) = min{ili ¢ An(z)} (3.2)

Analogous to (2.7), an empirical Bayes selection procedure §, = (8n0,...,0nk) can be
obtained as follows: For each £ ¢ X,
1 ifi=1,
() = g 3.3
Oni(2) {0 otherwise. (3:3)
Let R(G,8,|X(n)) denote the conditional Bayes risk of the selection procedure §,, given
X(n) and let R(G, §,) be the overall Bayes risk of §,. That is,

R(G, 81X (n)) = > i, (x:,) f(z) = C, (3.4)
TeX
and

where the expectation F X () is taken with respect to the probability measure generated
by X(n).

Note that R(G,d,|X(n)) — R(G,dc) > 0 for all X(n) and for all n, since Jg is a
Bayes selection procedure. Hence R(G,d,) — R(G,da) > 0 for all n. The nonnegative
regret Bayes risk R(G,d,) — R(G,da) can be used as a measure of performance of the

empirical Bayes selection procedure §,,.

A sequence of empirical Bayes selection procedures {cjn}:’le is said to be asymptoti-
cally optimal relative to the prior distribution G if R(G, d,) — R(G,dc) — 0 as n — oo.
Further, {d,},—, is said to be asymptotically optimal of order {a,}>>, relative to the
prior distribution G if R(G,d,) — R(G,dc) = O (o) where {a,}o.; is a sequence of

positive numbers such that lim,,_,o o, = 0.

In the following, we seek a sequence of empirical Bayes selection procedures possessing
the asymptotic optimality.
3.2 Construction of Empirical Bayes Selection Procedure

To construct an empirical Bayes selection procedure as described in (3.1)-(3.3), we
first need to construct an empirical Bayes estimator for 9;(z;). Since 1;(x;) is increasing

in z; we desire a monotone estimator for ¥;(z;).
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Based on X;(n), for each x = 0,1...., define

{fm(w) 2 3 Iy (X, (3.6
hin(z) = fin(2)/a(z).

where a(z) = 1/(z!). Note that f;,(z) and h;,(z) are unbiased and consistent estimators

of fi(z) and h;(x), respectively. From (2.4), hy,(x; +1)/hin(z;) is a naive estimator of the

)
(z

posterior mean %;(z;). However, this estimator may not possess the monotonicity property.

Thus, we consider an isotonic regression version of h;, (z; + 1)/hin(z;).

Let N;1 = min(X;1,..., Xin) and Ny, = max(X;q,..., X;n). For each y = 0,1,...,
define ’ v
Uin(y) = > hin(z + L)a(z +1),¥(y) = X hi(z +a(z +1),
=0

2350 y (3.7)
Hin(y) = mZzlo hin(z)a(z + 1), Hi(y) = }zfo hi(z)a(z + 1),
and \Ifzn(—l) = \I’z(—l) = Hzn(—l) = HZ(—l) =0.
Next, define
. _ ) Uin(y) = ¥in(Niz — 1)
¢in (N’Ll) = Nug;}élNin {Hzn(y) — 1;‘]-’5”(]\’7-1.1 _ 1) } ’ (38)

where b/a = oo when a = 0; and for each z between (including) N;;+1 and Nj,, recursively,
define

i (y) - EV b2 (2 hin(alz + 1)
¢:n(m) - fBSr;lSHJ{’in Hzn(ys - Hzn(x - 1), . (39)

Note that since H;p(Njn) — Hin(z — 1) > 0 for Nj3 < z < N, ¥k (z) < oo.
{vz, (ac)} 2N, 18 the isotonic regression of {hin(z +1)/hin (z)} N v=N;, With random weights
{hin(z)a(z + 1)}$;'}V“, see Puri and Singh (1990). Hence, ¥, (z) is nondecreasing in z for
z = Nj1, ..., Nin. By Barlow, et. al. (1972), for N;; < z < Ny,

z—1 z—1 - (y
Z Yi(2)hin(2)a(z + 1) < Z m—zg—é_)—l)hm(z)a(z +1)
z=N;1 z=Ni o
_ wz_: hin(z + Da(z + 1) (3.10)
S‘I]:n(; - 1)'
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Therefore, from (3.8) - (3.10), we have, for each z = Njy,..., Ny,

Uin(y) = Yin(z —1) }
Hin(y) — Hin(z —1) )

o (3.11)

¥i,(z) > min {

For z = 0,1,...,N;; — 1, define 97 () = ¢}, (N;1); for > Ny, define ¢, (z) =
.(Nin). Therefore, we see that 97, (z) is a monotone function of the nonnegative integers

z.

Now, we let §;, = (6%,...,0; ;) be the empirical Bayes selection procedure defined
through (3.1)-(3.3) by replacing %;,(z;) by ¢f,(z;). We also denote its associated A, (z)
and 4, by A%(z) and i}, respectively. Then, conditioning on X (n), the conditional Bayes
risk of ¢ is:

R(G, 81X (n)) =) tis (z:2) f(z) — C, (3.12)

TeX

and its overall Bayes risk is:

R(G,8%) = Ex () R(G, 811X (n)). (3.13)

4. Asymptotic Optimality of §;,

In this section, we evaluate the asymptotic optimality of the empirical Bayes selection
procedure §,. We assume the prior distribution G; being nondegenerate so that ;(z;)
is strictly increasing in x;. Let B;(1) = {z;|v:i(z:) < 6o}, Bi(2) = {z;|vi(z;) = 6o} and
B;(3) = {zi|vi(z;) > 6o. Define

me = sup Bz(l) lf Bz(l) 75 d),
: -1 otherwise; (4.1)
M, = { inf B;(3) if Bi(3). #* @,
00 otherwise.

By the increasing property of ¢;(z), m; < M;. When B;(3) # ¢,m; < M; < co. We
may have either M; = m;+1 for which B;(2) = ¢, or M; = m;+2 for which ¢;(m;+1) = 0
and B;(2) = {m; +1}. |

k
Let E; denote the event that N;; =0 and N;, > M;+2,i=1,...,k,and E = ) Ej;
Y
let Ef and E° denote the complements of the events F; and FE, respectively. Altso, let
Ai = {;Ij € X|Zg(£§) Zi},izo,l,...,k.



4.1 Analysis of Regret Bayes Risk

From (2.8) and (3.12), given X (n), the conditional regret Bayes risk of &, is:

R(G’ é;'X(n)) - R(G’ éG’) = Z[d’z,‘; (-'L'z;';) - 'ﬁbia (xzc:)]I(E)f(‘z;)

TeX

(4.2)
+ D iz (@i3) — Yia (2i6)1I(E°)f (2)
TeX
where I(S) denotes the indicator function of the event S. Now,
> i (i) — Yig (2i6) I (E) £ (z)
TeX
k&
=>_ 2> Hinlg) =i,ia(z) = j and B}y(w:) — vi(z;)]f (2)
TeX i=0 j=0
k
= > Hinle) =i,ia(z) = 0, B}wi(x:) — 60)f(2) (4.3)
TeAp i=1
k
+) ) I{in(z) = 0,ic(z) = 4, E}o — ¢;(z))f (z)
J=1ZeA;
kE k-
+D 30 ) Hinle) =i,ic(z) = j, E}i(zs) — ¢5(2;)]f (2)-
j=1i=1 TeA;
On Ay, fori € A(z),v:(x;) = 0g. So,
I{iy,(2) = i,ic(z) = 0, E}[¢i(2:) — bo]
(4.4)
For each j =1,...,k, on A, for i ¢ A(z),¥i(z;) = ¥;(z;). So,
{3 (z) = i,ic(z) = j, E}hi(x:) — ¢;(z;)]
(4.5)

=I{i7(z) = i,ic(z) = j, i¢A(z), E}ei(z:) — ¥;(z;)].
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Combining (4.2)—(4.6), the regret Bayes risk of §, can be written as:
R(G7 é;) - R(Ga éG)

k
=3 Y ExiH{in(e) = i ic(z) = 0,i¢A(z), E}i(z:) — b0l f(z)

TeAp i=1
k
+3 > BxpyHin(@) = 0,ia(z) = 5,0¢A(g), B0 — ;(x;)1f (z)
J=1ZeA; (4.6)

k k
+> 0> Ex(mI{i(e) = ivic(z) = j,i¢A(z), E}hi(z:) — vi(z;)]f (=)
j=1

j =1 TeA;

+ EX(n)[Z[¢i; (@iz) — Yig (%) (E°) f(2)]
TeX
=l,+1I,+1II,+1V,.

4.2 Rate of Convergence

The main result of this paper is regarding the rate of convergence of the regret Bayes
risk of the empirical Bayes selection procedure §,. This result is stated as a theorem as

follows.

Theorem 4.1 Let §; be the empirical Bayes selection procedure constructed in Section

3. Suppose that
(a) [;° 0dGi(6) < oo for each i =1,...,k, and
(b) M; < oo for each i =1,...,k.
Then, R(G, ;) — R(G, dc) = O(exp{—~yn}) for some constant v > 0.

Proof: To prove this theorem, it suffices to investigate the asymptotic behaviors of the

four terms I,, I, 111, and IV, given in (4.6). First, we introduce the following notations:

b,;(Mi, 90) = [hz(Mz + 1) - eohz(Mz)]a(M, + 1),
Cj (Z, 00) = [hj (Z -+ 1) — 90h(z)]
s(zi, x5) = [Yi(zs) + ¥5(24)]/2,

k
Ci=00+) / 0dG;(0)
=1

11

fo
a(z)

1
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(I) Let v1; = 2[b;(M;,6) min(1, 67_1)/4]2 and v; = m1n Y1i- Note that v;1; > 0 for each

t=1,...,k and therefore y; > 0. By Propos1t10n A 1

k
In< Y Y dexp{—nyilyi(z:) f(z)

@EAQ =1

k
< dexp{—-nv1} Z Z¢z(xz)f(§)

TeX i=1

k oo
= dexp{—n'yl}[z /0 0dG;(9)]

(II) Let y2; = 2 mi<n c2(z,60) and v, = I<111n 725. Then 72; > 0 for each j = 1,..
m;

and therefore 42 > 0. By Proposition A.2,

m;j

k
I <) D > exp{—ny2;}00f (z)

J=1ZeA; 2=0

k
< 0o exp{—ny2}[max(ma, ..., mg) + 1] Z Z f(z)

J=1TeA;
< g exp{—ny2 }[max(my, ..., mg) + 1]

since Zk: > flz) <1.

J=1ZeA;

(III) For each i # j, let A;(i) = {zeA;|z; < M; — 1}, A$(3) = {zeAjlz; > M;}. Thus,

111,

k

J=11=1 LeA;(i)

_|_

J=1 =1 TeAS(i)
=111, +111,,.
For zeA; (i), z; < mj,z; < M; — 1. Let
Y3i51(2) = 2[bs(@s, 8(2s, z;)) min(1, 1/s(x;, 7)) /4]%.

12

‘7k,

S Ex myIin(z) = 4,ic(z) = 5,1 € Az), 2 < M; — 1, E}i(w:) — v;(z5)]f (2)

k &k
YD > BxpIiine) =iia(z) = j,i € Alg), 2 > M, BYapi(z:) — v (7)) (2)



Note that v3;51(z) > 0. Also, 7vs;;1(z) depends on g only through z; and z;, for which

0 <z; < M;—1, and 0 < z; < m;. Therefore, v3;;1 = 111‘1111(1 )73131( z) > 0.

Let yaija(z, 2) = 2c3(2,5(zs,25)),0 < z < ;. Note that v3;52(z,2) > 0 for each

0 < z < z;. Therefore, v3i2(z) = Oém<n Yaij2(Z, 2) > 0,73i52 = xﬁu%)%wz(x) > 0,735 =

min(7ys; 1, ¥3i52) > 0,93 = llgljigk Y3ij > 0 and y3 = 1%1319 v3i > 0.
g sig

By Proposition A.3(b),

k .
I <) [dexp{—nvs} + (z; + 1) exp{—ny3}|¢i(z:) f(z)

§=14i=1 TeA; (3)

k&
< [d + max(myq,...,mg) + 1] exp{— n’Ys}ZZ Z Vi(z:) f(z)

§=1i=1 TeA; (i)
k oo
< [d+ max(my,...,mg) + 1] exp{—nvys3} k[ Z/ 0dG;(6)).
i=1

By Proposition A.3 (a) and the definition of vy;,

kE k
Iy <Y )0 Y dexp{—nyu}lvi(z:) f(z)

j=1i=1 TeAs(i)

k
gdexp{—nvl}zz Z Yi(z;) f(z)

j=1i=1 LeAs(i)

koo
< dexp{—nvl}k[z /0 0dG;(9)]

(IV) Let 4 = min(én[l — £;(0)]~", n[F;(M; + 1)) and 74 = 1I£ii£k Yai-
Then v4; > 0 for each ¢ =1,..., k and therefore 4 > 0. By Proposition A.4,
1V, < 2kCy exp{—ny4},
where C; = 0y + zk:lfooo 6dG;(9).

Now, v = min(vy1,72,793,74) > 0. From the preceding analysis, we have: I, =
O(exp(—vn)), I, = O(exp(—yn)), I11, = O(exp(—vyn)) and IV,, = O(exp(—yn)). There-
fore, from (4.6), we conclude that R(G,J;,) — R(G, §c) = O(exp{—yn}).
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Appendix

In the following, we introduce certain preliminary results without providing the proofs
for presenting a concise proof for Theorem 4.1. The interested readers are referred to Gupta

and Liang (1997) for the details of the proofs.
Proposition A.1 Forz ¢ Agandi ¢ A(z),
Ex myI{in(z) =i,ic(z) = 0,i¢A(z) and E}
<d exp{—2n[b;(M;, 0,) min(1,05%)/4]"},
where b;(M;, 60) = [hi(M; + 1) — Ooh;(M;)]a(M; + 1) and d is a constant independent of

the distribution of X (n).

Proposition A.2. For each j =1,...,k and for z € A;,

™m;
E‘X(n)I{’.;(@) =0, ig(z)=jand E} < Zexp{——2nc§(z,00)},

z2=0

where c;j(z,60p) = [hj(z+ 1) — Ooh;(2)] /(ﬁ + ﬁoz_))

For each j = 1,...,k, each z ¢ A; and i & A(z),¢;(z;) = Oxélli?kv,bg(xg) <

min(fp, ¥;(x;)). There are two cases regarding the value of x; : either z; > M; for which

i (x;) > 6g or 3 < M; — 1. Thus,

=Ex ,yI{in(z) = 4,ic(z) = j,i¢A(z),z; 2 M; and E}
+ Ex (o H{in(z) = i,ic(z) = j,i¢A(z), 2 < M; — 1 and E}.

Proposition A.3
@) ExI{in(z) =i ic(z) = j,i¢A(z), z; > M; and E}
< dexp{—2n[b;(M;, 6o) min(1,05)/4]°}.
(b) Ex, H{in(z) = i,ic(z) = j,i¢A(z), ;s < M; — 1 and E}
< dexp{—2n[b;(z:, s(x, z;)) min(1, 1/s(z;, z;)) /4]%}
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+ %J: exp{—2nc§(2, S(xia mj))}’

where 8(zi, 2;) = [$(:) + ¥ (7)]/2
Proposition A.4
Ex o U5 (557) = i (@10} F @) (B)}

TeX
k

<C1 ) lexp{~n tn[l - fi(0)]"'} + exp{—n ¢n[F;(M; + 1)] '}],

=1

k
where C; = 60y + Z f@dGz(Q)
i=1
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