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1. Introduction

Consider k independent Bernoulli treatments 74, ..., 7%, where for each i, treatment
7; is characterized by the probability of success 8;. Let 6}) < ... < ;) denote the ordered
values of the parameters 04, ...,0;. It is assumed that the exact pairing between the or-
dered and the unordered parameters is unknown. A treatment m; with 6; = [ is called
the best among the k& underlying treatments. The Bernoulli treatment occurs in many
fields, such as medicine, engineering and sociology. A number of statistical procedures
have been studied to find the best Bernoulli treatment. Tamhane (1980) considered the
problem of selecting the better of two Bernoulli treatments using a matched pair sample
design. Sanchez (1987) investigated a modified least-failure sampling method for Bernoulli
subset selection. Yang (1989) studied the selection procedures through a Bayes approach.
Gupta and Liang (1986, 1988, 1989) developed empirical Bayes procedures for selecting
the best Bernoulli treatment using binomial sampling design. In two recent papers, Gupta,
Liang and Rau (1994, 1995) have specifically, investigated the empirical Bayes selection
procedures for the Bernoulli and normal populations using two-stage procedures. A good
review in this area is contained in Gupta and Panchapakesan (1996). For further refer-
ences in the area, see also Gupta and Panchapakesan (1979) and Bechhofer, Santner and
Goldsman (1996).

In this paper, we are concerned with the problem of selecting the best Bernoulli
treatment compared with a specific standard using the inverse binomial sampling scheme.
Unlike binomial sampling, in which the sample size (number of trials) from each treatment
is fixed and therefore the pertaining random variable is always being bounded, the sample
size in inverse binomial sampling is not fixed and its associated random observation is

unbounded.

The formulation of the selection problem is described in Section 2. A Bayes two-stage
selection procedure is derived in Section 3. We construct an empirical Bayes two-stage se-
lection procedure in Section 4. The asymptotic optimality of the proposed empirical Bayes
two-stage selection procedure is investigated in Section 5. We prove that the convergence
rate of the proposed selection procedure is of exponential order, that is, O(exp(—c*n)),

for some positive constant c*, where n is the number of the historical data at hand. In



Section 6, we carry out a simulation study to investigate the performance of the proposed
selection procedure for small to moderate values of n. The simulated results are consistent

with the rate of convergence obtained in Section 5.

2. Formulation of the Selection Problem

Consider k£ independent Bernoulli treatments 7y, . .., 7%, with unknown success prob-
abilities 61, . .., Ok, respectively. Let f[;) < ...0[) be the ordered values of the parameters
01,...,0,. We assume that the exact pairing between the ordered and unordered param-

eters is unknown. Any treatment associated with the largest success probability O[] is
defined as the best treatment. For a given standard 6p(0 < 6y < 1), treatment m; is de-
fined to be good if the corresponding 6; > 6y, and bad otherwise. Our goal is to select
a treatment which is the best among the & treatments and also good compared with the

standard 6. If there is no such treatment, we select none.

A two-stage selection procedure is defined as follows. First, from each of the k treat-
ments, a sequence of Bernoulli trials are carried out until a fixed number m; of successes
are achieved. Let X, be the number of failures before observing the m;-th success from ;.
Based on the observations X = (Xi,...,X%), we decide whether the selection should be
made immediately or not. If we decide to make the selection immediately, we may select
a treatment from the k treatments based on X. Or we may select none in which case the
k treatments are all excluded as bad. If we decide not to make the selection immediately,
then based on X, one (and only one) treatment, say, m; is chosen. And from this chosen
treatment m;, a sequence of Bernoulli trials are carried out until m, additional successes
are achieved. We let Y; be the number of failures before observing the ma-th success at
the second-stage sampling. Then based on X and Y;, we decide either to select treatment
m; as the best treatment and consider it to be good, or select none and thus exclude all k&

treatments as bad.
Let @ = {6 = (61,...,6k)|0 < 6; < 1,7 = 1,...,k} be the parameter space. Let
k
g = (ao,---,ax) be an action, where a; = 0,1;4 = 0,1,...,k and 3 a; = 1. For each
. =0
1=1,...,k,a; =1 means that treatment =; is selected as the best a:nd also considered to

be good compared with 8. a9 = 1 means that all the k treatments are excluded as bad



and none is selected. We define the termination action ¢ as follows:

¢ = 1, if the selection is made immediately after X is observed,
~ 10, otherwise.

When ¢ = 0, let A = (A4,...,Ag) be the identity action, where A; = 0,1;7 = 1,...,k,
k

and > A; =1. A; = 1 means that the second stage sampling is taken from treatment ;.
i=1

The loss function is defined to be

k
L9, (g,t, 4)) = max(fz}, o) — t Z a;0; + kcy
=0

+(1 - t){ - i A (aﬁi +(1- a¢)90> + Cz}, (2.1)

where c; > 0 is the cost of sampling from each of the k treatments at the first stage and

cg is the cost of the sampling at the second stage.

Conditional on 6;, we have X; ~ NB(m1,6;) and Y¥; ~ NB(ma,0;). Here, NB(,-)
denotes the negative binomial distribution with the two parameters. Given 6;, let f;(z|0;)

and g¢;(y|0;) be the conditional probability functions of X; and Y;, respectively. That is,
-1
£i(x)6;) = <m1 Zx > 0 (1—60,)%  w=0,1,...

and
—1
0:(yl6:) = ("”2 t )e;“u _o)% y=0,1,...

It is assumed that for each ¢« = 1,...,k,6; is a realization of a random variable ©;

which has a Beta distribution with probabiliity density function h;(6;|a;, :), where

o) i —1 (1— ) —
hi 91 iy i) = palad 1-06; ai(1—pi)—1 0 9,,, 1.
(Osloris i) NGNS ,ui))ez (1-6:) ’ o<

Both o; and p; are unknown, 0 < p; < 1 and o; > 0. Note that E(0;) = p; and

Var(©;) = % It is also assumed that ©4,..., 0O are mutually independent.

Denote ¥ = (Y1,...,Y%). Let X and Y be the sample spaces generated by X and Y,

respectively. A two-stage selection procedure, in general, consists of the following rules:
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a. Stopping rule 7: For each z € X, 7(z) is the probability of terminating the sampling

after observing £ and making a selection decision immediately based on z.

b. Identity rule § = (61,...,8x): For each z € X,4;(z) is the probability of taking
the second-stage inverse binominal sample from treatment m; when we decide not

to make a selection decision immediately after observing . Note that § satisfies

k
> 0i(z) =1 for each z € X.
i=1

c. First-stage selection rule d; = (dio,...,d1x) : For each z € X and i = 1,...,k,
let dyi;(z) be the probability of selecting treatment =; as the best from among the
k treatments and also good compared with 6y, and let dqo(z) be the probability of

k

excluding all the k treatments and selecting none. For all z € X, >_ dy;(z) = 1.
=0

d. Second-stage selection rule do = (dao,...,d2x). For each z € X and y € Y, when
the decision of going to take the second-stage sample from =; is made, do;(z,y) is
the probability of selecting m; as the best from among the k treatments and also
considered to be good compared with 6y, for i =1,..., k. Note that d;(z,y) depends
on Y only through Y; since there are no second-stage observations from any other

treatments Therefore, we denote do;(z,y;) = doi(z,y),1 < 7 < k. Let dog(z,y)
—Z 9i(z)(1 — dai(z,y;)) be the probability of excluding all the k¥ treatments and

selectlng none, based on z and y.

Under the preceding statistical model, the Bayes risk of the two-stage selection pro-
cedure (7,d,d1,ds) is denoted by R(r,§,d1,ds).

We have
R(r,6,d1,45) = O~ 3 (z) (Edu Dei(e)) f0+ X (1-7(2) (2.2
Tex Tex
k “+o00
X {Cz — 6o+ Z bi(z) ( > doil@, i) (80 — i (@i + va)) filwilmi, o, Mi)) }f(@)
4 k )
Zdli(@)(eo — i(xi)) — c2+ 0o
= Z T(@) { z=0k +oo 4 f(".l.")
vex - Z‘Si(%’)( > dai(z, v:) (80 — Pilwi + ) fi(yil i, Oli,uz')>




+3 {cz — 6o + Zd (z) ( io d2i (2, ¥:) (B0 — vilzi + 9:)) filyilzi, 0, M)) }f(@)

Trex y;=0

+C.
(2.3)

where ¢;(z;) = E(0;|X; = z;) = ﬁ% is the posterior mean of ©; given X; = z;,1 =

1,...,k,00(zo) = Oo;%i(zs + y;) = azfnﬁl‘lizgi;’jiyz is the posterior mean of ©; given

Xi=xz;and Y; = y; foreach i = 1,...,k. Also C = fﬂ max(e[k],eo)dH(Q) + ke; and
H(9) is the joint distribution of ©@ = (04,...,0%); f(z) = H fi(z;) where

1
fi(:vi)=/0 fi(@i160:)hi(0i| i, ;) dO

(ml +z; — 1) T'(a)L'(my + o + )T (24) + (1 — p3))
Ti D(opi)T (0 (1 — pa))T(ma + 25 + ;)
is the marginal probability function of Xj;.
filzi, ys)
fi(zs)
Note that f;(ys:|z;, o, ;) is the marginal conditional probability function of Y; given X; =

1
filyilzs, oy ps) = , Where fi(miayi):/o Ji(2:10:)9:(yi|0:) hi (0;] s,y 1) dO;

z; and (a;, ;). A direct computation yields

me +y; — 1
filyilzs, oy i) = ( 2T )

Yi

% D(my + 2 + o)L (my 4+ mao + aps) Tz + ys + (1 — p3))
F(m1 +ma+x; +y; + ai)I‘(ml + OlZ,U,Z)F(:B@ -+ Oéi(l - /1'1))

3. Derivation of a Bayes Two-stage Selection Procedure

We derive a Bayes two-stage selection procedure as follows.

a. First-stage selection rule

For each ¢ € X, let I(z) = {i|pi(z;) = Jax, @i(z;),5 = 0,1,...,k}. Define ¢* =

min{ii € I(z)}. Then we have a first-stage selection rule ¢? = (df),d¥,...,dB) as

follows:



The stopping rule 72 is defined to be

dBi* () =1,
{ , L (3.1)
dy;(z) =0, for j+#i*
b. Second-stage selection rule
We define a second-stage selection rule df = (d&,dZ,...d5) as follows: for
i=1,...,k
1, if 4w+ ys) > bo;
dgi(2,9) = dgi(z,v:) = _ (32)
0, otherwise,
and
k
dyo(z,u) = > 67 (z)(1 - d5i(z,vs))
=1
where §8(z) = (68(z),...,08(z)) is the identity rule defined below.
c. Identity rule
Foreachi=1,...,k, and 2 € X, define
Ti(z) = Y di(z,v:) (0o — wi(ws + v:)) fiwilws, 0, ). (3.3)
y;=0
Let J(z) = {j|T;(2) = win Ti(z)} and j* = min{j|j € J(z)}.
<j<
We then define an identity rule §% = (6&,...,52) as follows:
L i j=7%
68 (z) = 3.4
7 (@ { 0, otherwise. (584)
d. Stopping rule
For each £ € X, let
k k
Qz) = Z dﬁ(%’)(eo — ¢i(zi)) —ca - Z 5?(13)71'(@)- (3.5)
=0 i=1



(g — {1, if Qz) <0 (3.6)

0, otherwise.

Next we will show that the selection procedure (72, §2,d2, dP) is a Bayes two-stage

selection procedure.
Theorem 3.1 The two-stage selection procedure (77,88, d2,dP) is a Bayes two-stage

selection procedure.

Proof: Let (7,4,81,d2) be any two-stage selection procedure. It suffices to show
R(T’ éa dli dz) - R(TB, éB, 4137 QlZB) > 0. We have

R(r,8,d1,d2) — R(r?,6%,d2,d8) = I + II + 11, (3.7)
where
I= R(Ta é) dl) d2) - R(T’ é’ dlB7 dZB),
II = R(,§,d?,d5) — R(r, 85,42, d%), (3.8)
IIT = R(r,¢%,d?,d5) — R(r%, 8%, d7,dF).
From (2.2),
k
1= 3 o) L - dulaoten ) @)
rekXx =0

+ Z (1—71(z {26 (z) ( Z (dai(z, i) — d5; (2, 94)) (60 — ¥i(wi + s)) (3.9)

reX y; =0

< filwloan ) ) ba)

By the definition of d¥ and d, for each i =1, ..., k,
k
B — Ar:) = ,
;(di () dlz(@))‘ﬂ%(xz) gg?gi(%(mz Z dlz Soz(mz > 0,
and by the definition of ¢Z, we have (da;(z, ;) — d5 (z, v:)) (B — i (i +1:)) > 0. Therefore,

I > 0 since all the other terms in (3.9) are nonnegative.
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From (2.2) again, since

zk:(&(ﬂ;) — 67 (2)Ti(z) = i&-(@)Ti(@) — min Ti(g) 2 0, (3.10)
we have B k h
=3 0-r() (;@(@) - P@)T(e) ) /(@) 20 (3.11)
From (2.3), by the definition of 75,
1 ="y (r(z) - 7% (x))Q(z) f (z) > 0. (3.12)

TeX

The proof of Theorem 3.1 is completed by combining (3.7), (3.9), (3.11) and (3.12).

4. The Construction of an Empirical Bayes Two-Stage Selection Procedure

4.1. Empirical Bayes Framework

The Bayes two-stage selection procedure (72,2, d2, d2) defined in Section 3 depends
on the unknown parameters (o, p;),% = 1,..., k. Since the parameters are unknown, it is
impossible to implement the Bayes two-stage selection procedure for the selection problem
in practice. In the empirical Bayes framework, it is generally assumed that there are
some past observations when the present selection is to be made. At time 7 = 1,...,n,
let X;; be the number of failures before observing the m;-th success from m;. Let @; =
(©14,...,0k;) be a random vector where ©;; stands for the probability of success from
treatment m; at time j. We assume that ©;,5 = 1,...,n, are i.i.d with prior density
h(g;) = ﬁ hi(0;5]ci, ;). Therefore, conditional on ©;; = 6,5, X;;|6;; ~ NB(m4, 6;;) and
X;; has Za= 1marginad probability function fi(z). Let X; = (Xij,..., Xg;) be the random
observations of the first-stage sampling taken at time j = 1,...,n. Let X,,41 = X =
(X1,...,Xk) be the current (present) observations taken at the first stage..

4.2 Certain Useful Empirical Bayes Estimates

In order to construct an empirical Bayes two-stage selection procedure, we first intro-
duce certain properties related to the parameters (o, u;). Then based on these properties,
the empirical Bayes estimators are derived. We then construct an empirical Bayes two-

stage selection procedure in the next subsection.
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Foreach:=1,...,kand j=1,2,...,n, we have

(m1 +X,;j—2) (m1 +Xz'j—2)
E m1—2 _ E E m1—2
(m1+Xij—1) - (m1+Xij—1)
ml—-l m1—1

9”]) == E@ij = Lz, (4.1)

and

(’I‘I‘L]_-I—Xij—-?)) (m1+X” —3)

m11

=)

=y (4.2)

m1—1

=E(1-0;;)*= (i1 = 'u;i ::: 1)(1 — i)

Let C; =v; — (1 —p;)* and D; =1~ p; — vy, for i = 1,..., k. From (4.2), we have,

{ 0= TS

(4.3)
azgl ,u'f.)l-"z
o;+1 :

Note that for i = 1,...,k,a; = D;/C;. Since a; > 0 and 0 < p; < 1. both C; and D; are

positive.

Fori=1,...,k, based on (X;1,...,X;n), let,

p & (M)
Min = 7 20 m,
j=1 my—1
n (m1+X —3) (4.4)
Vin = 7 2 (mfi’x_l—l) I(Xi; 2 2),
j=1
and
{ Cin = vin = (1= )", (4.5)
Din =1- Hin — Vin.
Then we have
1 i (m1+Xi.£_2) (m1+Xij1—3)
. = - ml_ - ml_ ..
Din = n Z <1 (m1+XiJ'_1) (m1+Xz'j—1) I(XZJ > 2))
.7=1 m1—1 ml—l
T - - : . I(X;: > 2
n; m1‘|‘Xij—2 (m1+Xij_2)(m1+Xij—3) ( ij = )
>0
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However, C;, may be nonpositive while C; > 0. From o; = D;/C;, we can see that
a; — +oo as C; — 0. So we define
Din/Cin, if C; >0
ain _ m wm Z?:L 3 (4.6)
00, otherwise.
We can also see that lim ¢;(z;) = p; and lim ;(z; + y;) = p;. Therefore, we
a;~—+>+4o0 a;—+oo
define empirical Bayes estimators ;. (z;) and ¥, (z; + y;) for the posterior means ¢;(z;)

and v;(z; + y;), respectively, as follows:

( Qinlbin+m1 :
sebmtetlif G > 0;
(pzn (.’L‘z) — { Oin+Ti+ma h .
HMin s otherwise,
4 4.7
Qinflin+mi+me if Cm > 0 ( )
. . . b ?
¢m($z _'_yi) — J aintzityitmitma .
L Lin, otherwise.
ma+y;—1

Let @on(zo) = 6p. Since lim  f;(yi|zi, o, ps) = ( ),u;nz (1 — p;)¥, we define an
a;—4oco

2

Yi
empirical Bayes estimator for the marginal conditional probability function f;(y;|z:, cs, ts):

Fonlul ) fiYilTs, iy Bin), if Cin >0 (48)
: i | Liy Qiny Lhi = . . .
in\Yi|Tiy Ain, thin (mz—};j; 1) #;777;2 (1 . ’um)yi, otherwise.

4.3 The Proposed Empirical Bayes Two-Stage Selection Procedure

We now propose an empirical Bayes two-stage selection procedure (7*7, §*", d", d5™)

as follows:
a. Empirical Bayes first-stage selection rule di” = (dig, diT, ..., di?).

Let I,(z) = {i|pin(z) = Jnax vin(z;),1=0,1,...,k}. Define ¢* = min{i|i € I,(z)}.
<<

Then we define di™ as follows:

diz; (z) = 1,
{ " (4.9)

dn(g) =0, for j#i.
b. Empirical Bayes second-stage selection rule d3™ = (d3g,d57, ..., d57)
Fori=1,...,k, let
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1, if in(zi+ yi) > bo;
dyi (2, y) = d3' (2, 945) = { _ (4.10)
0, otherwise,
and
k
A5 (z,y) =Y 6™(z)(1 — d3?(z, s))
i=1
where §*" = (61", ...,0;™) is the empirical Bayes identity rule defined below.
c. Empirical Bayes identity rule §** = (61", ...,6;:"™)
For:=1,...,k, define
T’in(w Z d Z,Y; (00 - ¢zn(mz + yz))fzn(yzlmm Qin, ,U"m) (411)

y;=0

Let Jn(z) = {j|Tjn(z) = 1I£1_i2c Tin(z),j=1,...,k} and j* = min{j|j € J,(z)}. Then

the empirical Bayes identity rule_cj*” is

L, if j=ja,
5™ (z) = " (4.12)
0, otherwise.

d. Empirical Bayes Stopping Rule

For each £ € X, let

k k
Qn(z) = Z 15 ()00 ~ @in(xi)) — 2~ 252‘ "(2)Tin(2) (4.13)
and 1, if Qn(z)<0
e = {0, otherwis;. ) (4.14)

5. Asymptotic Optimality of (7*7, §*", di", di")

Consider the empirical Bayes two-stage selection procedure (7*7,§*", di™, ds™) con-
structed in Section 4. Let R(7*",0*",di",d5") be the conditional Bayes risk given
(X1,X2,...,Xy) and E,R(T*",§*",di", d5") the Bayes risk of the empirical Bayes two-

stage selection procedure (7*",§*",d;™, d3"), respectively, where E, is the expectation
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taken with respect to (X1, ...X,). Note that R(7*",§*", di", d5") — R(72,88,d2 ,d8) > 0
since (72,88,dP,dD) is the Bayes two-stage selection procedure. Therefore, we have
E R(T*™,§*" d5™, d3") — R(mB,88,dP,dP) > 0. We use the nonnegative regret risk
E,R(T*",§*", di™, di") — R(7B, 85, dP, dP) as a measure of the performance of the empir-

ical Bayes two-stage procedure (7*",§*",di™, d5"). Following (3.7) — (3.12), we have
R(r*", 8", di", d5") = R(r",8°,d7,d3) = In + IIn + 111, (5.1)

where
0 < I, = R(r*", 8", ™, d5™) — R(r*",6*",d7, d3)

=Y 7" (z)(d5- ()i (zi0) — A (2) iz (zi3)) f (2)

TeX
¢ a3 e w - e w) (52)
Q_IGX =1 y;=0
X (0o — Yi(zs + vi)) fi(yilz, o, Ui)) }f(@)
= in,1 + In,2)

0 < II, = R(r*",8*",dB,dB) — R(r*", 6B, dB, dB)

= 3 (1 - (@) (82 (@) T () — 62 (2) T (2)) f (2) (53)
.’I?GX
and
0 < III, = R(r*",§B,dB,dB) — R(+B,§8,dB, dB)

(5.4)

=) (™ (z) - 72(2))Q(z) f (z)-

ZTEX
5.1 Preliminary Analysis
To investigate the asymptotic optimality of (7*7, §*", di™, d5™), we first do some pre-

liminary analysis. Define for i = 1,...,k,
Qi pbitm : : :
Ly — {maX{Nlai+m1+}v > 0y, N is a nonnegative integer}, (5.5)

- —1, if no such nonnegative integer exists.

and

L= { max{N |% > 6y, N is a nonnegative interger}, (5.6)
.= .

-1, if no such nonnegative integer exists.
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From (5.5) and (5.6), we can immediately see that for 1 < i < k.

{If Li; >0, then @;(z;) >0 for 0<xz; < Ly, (57
If Li;=-1, then ¢;(z;) <6y forall z;=0,1,...
and
{If Ly, >0, then t;(z;+y;) >0 for 0< (z;+y;) < Laj; 58)
If Ly =—1, then o;(z; +y;) <6y forall z;(y;) =0,1,...

Note that both L;; and Lo; are finite whole numbers given o; and u;, and we always

have Lg; > Ly;, fori=1,...,k.

Fori=1,...,k, let

{ze X[0<z; <Ly}, if Ly >0
Sl’L = { ’ Z- (5-9)
o, otherwise.
z,Y) EX X Y0 < x; +y; < Log}, if Lo > 0;
So; = {(~ y) | i T Yi 21} 2 (5.10)
o, otherwise.

Then from (5.7) and (5.9), for each z € S1;, ;(z;) — 6y > 0. Similarly, from (5.8) and
(5.10), for (z,y) € Sois Yi(zi + y;) — 60 > 0.

Also, for i =1,...,k, let

S3; = {;5 S XIT,,(@) < 0} (5.11)

From (3.2) and (3.3), we have, for i = 1,...,k,

Tz(ig) = 0, if x; > L21;;
(5.12)
Tz(@) <0, if z; <Ly and Lo; > 0.
Next, for j =1,...,k, let
Dyj = {z € X|0o — p;(z;) > 0} (5.13)
and
Dyj = {(z,y) € X x V|60 — ¥;(z; +y;) > 0} (5.14)

Since ¢;(z;) — 0 as z; = +o00, and ¥;(z; +y;) — 0 as (z; + ¥;) — 400, we can see that

both Dy; and D,; are always nonempty.
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(I) Analysis for I,
We have, from (5.2),
Iy =Y 7 (2)(d5. ()i (i) — i (2) iz (wi5)) £ (2)

rex

k
=3 (@) I{it = d,ip, = 0} (ps(i) — 60) f(z)

i=1ZeX

+0 2 @I = 0,05 = 3100 - 1(2)] @ (5.15)

k k
+3°5° S (@) I = 6,1 = 5} (ei(as) — 0i() F(z)

i=1 j=1T€X

=Inii+Ini2+1na3
Let by = min min {(pz(:rz) 6o}. Note that when S1; # ¢ and 0 < z; < Ly;, pi(xs) —

1<i<k 0ZLz;<L;
511#¢

0o > 0. Since Lq; is finite, minimum operation in b; is taken on a finite set. Therefore,

by > 0.

Since 0 < 7" (z) <1 and |p;(z;) — 0| <1forallz € &,

EnIn11<Z ZP{Z _7‘7’ _O}f()

i=1 TeX

:Z > P{i* =i,i = 0}f(z)

=" > Pufoi(w) = @u(@), VI # i, 0i(2:) > o,

L L (5.16)
and @i (1) < 6o, VI # 0} f(2)
k
< Z Z Po{loin(x:) — 0s(z:)| > @i(z:) — 0o} f(z)
i=1 LES1;
k
<Y Y Pa{loim(®) — gi(e)| = b1} f(z)
i=1 $eSy;

Denote by; = @rgjijr;{&o — @j(z;)} and by = 1I§I;'iélk bg;. Since ¢;(z;) is strictly de-
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creasing as z; increases, we have

6o — p;i(L1;+ 1), if 89> p;(L1;+ 1);
sz:{ 0 J( 15 ) 0 J( 15 ) (5.17)

Oy — (pj(Llj + 2), if 6= (pj(Llj -+ 1).

Therefore, b, = min by; > 0.
1<5<k

EnIn12<Z Z P{l _07' _J}f(:,l})

k
< Z: Y Puflein(e;) — @(25)] = 60 — 9j(25)}f (2) (5.18)

1ZEDy;

1ZeDyy
1
Let b3 = 5 1121% xegrllllals“ﬂ @i(x;) — ‘Pj(xj)| # 0}
1<]<
J#i
and
by = 4 min min  {pi(z;) — ¢;(z;)}

1<i<k ES1;NS
1<_7<k ~€ 1z 1j¢

J#i
We can see that b3 > 0 because the minimum operation is taken on a finite set. As for

bs, since @;(x;) is strictly decreasing as z; increases, and | min wi(z;) = wi(L1;) >
T3 14

T
6o. [max @;i(z;) = p;(L1; + 1) < o, we have

ALS T

1

be=gmin min {pi(z) - ¢;(Ly;+1)} > 0.
0<z;<Lq;

Thus,

k k
EnIn,1,3 < ZZ Pn{Z* = i’i:; = .7}(907,("1:2) - Soj(xj))f(@)
z;l J;l LES; (519)
=33 3 P it =i,i% = i () - 9;(z5)) f(2)
=1 j=1

=1 j=1%Ze(S1:NS1;)
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[
—I—ZZ Z Pn{'l'* :Z',?:;'; :]}(Qoz(wz) _(Pj(l'j))f(@)

i=1 j=1 L €(S1:NSY;)

<Y Y Pa{leinlw) — wile)]| > b}

1#£J LE(S1:NS15)
+ Po{lpin(zj) — @j(z;)| > b3}) f(z)

<Y Y (Pa{lpin(m) — pilw)| > ba}

i#j Z€(S1:NSY;)
+ Pod{lein(zs) — @j(z5)| > ba}) f(z)
Let bs = min min {4;(zi+y:)—00}, bes = min {6p—1;(zs+y;)}, and bg = lgl.igk{b&}-

1<k (Z.Yesy; (Z,Y)eS2:
So;#d

Since for ¢ = 1,...,k, S2; has only finite elements, b5 > 0. As for Ds;, since ¥;(z; + y;) is

strictly decreasing as (z; + y;) increases,

we have

; 0o — Ys(La; + 1), if 6o > (Lo + 1);
0o — i(Las +2), if 0o =1(La; +1).

Therefore, bg; > 0 for i =1,...,k. and bg = min bg; > 0.
1<i<k

k 400
En(In2) = Y Bn(l— T*"(@))(Zﬁ”(@)(z (d57 (2, 9:) — dgi(z, yz-)>

Tex i=1 9i=0
X (0o — ti(zi + i) fi(vilz, i, ps) f (2)
k Hoo

< >N Ea(dst(z,v) — d5(z, 1)) (B0 — bi(zi + i)

B rTeX i=1 y;=0
k

< Z Z Po{ths(zs + ;) > 00 and ¢ (zi + y:) < 0o}

i=1(Z,Y)eS2;
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k
+3 Y Pu{thi(mi+wi) = 00 and vin(zi+us) < 60}

=1 (Z,Y)eD2;
X fi(yslz, o, ps) f ()

k
<> Y P{dhi(ws +vi) — Yin(mi + vs) > bs}

i=1 (,Y)S5s

X fi(yilz, o, i) f ()

k
+ Z Z Pn{¢in($i + yi) - ¢z($z + yz) > b6}

=1 (Z,Y)eD2;
X fi(yslz, o, ps) f ()

(II) Analysis for I1,.

From (5.11) and (5.12), for s =1,..., k&, we have

Ssi ={z € X|Ti(z) <0} ={z € X|0 < z; < Ly; and Ly; >0}

—

Let br=5 min  min {T;(z) - Ti(z)|T;(2) # Ti(z)}
1%_?75;"7 OS:EjSLzJ'

and

(5.20)

(5.21)

We can see that b7 > 0 since the minimum is taken on a finite set. As for bg, from

(56.12), we have T;(z) = 0 while T;(z) < 0, therefore,

1 . )
bs=5 min  min {|Ti(z)]} >0
Lg; 20

18



Since |T;(z) — T(w)| < 1, we have

M?r

En(I1,) Z Z Po{j* =i, 45 = i}(Tj(z) — Ti(2)) f(2)

@
I
-
.
=

|
O

Po{5* = 4,55 = 5} (Ti(z) — Ta(2)) f (2)

e
A\ a:

o
I
-
w
I
i
]
m
n
w

S PG =150 =} Ty(z) - Ti(z)) f(2)

J#i LE(S3:NS3;5)

-
I
—

|
v

k
+35 Y Rt =i =0 Tie) - Tilz) f(z)

=1 _’]#'L @6(537;053]')6

k
<33 Y. P{Ti(z) < Tyj(z) and Tin(z) > Tin(z)}f(2)

=1 i 0<=z;<Lg;
J?E 0<:z: <Lg;

k
+ z;; O<Z<L P {Ti(z) < Tj(z) and Tin(z) > Tin(z)}f(z)

k
<200 Y Pu{lfinle) - T@) 2 brd + Pu{lTin(e) ~ @) 2 br}f(2)

+3°3 N PuAITin(@) — Ti@)] > br} + Pa{|Tjn(z) — Tj(2)] > br}f(2)

=1 J#’L 0<m i <Lo;
>L2_7

(5.22)
(ITT) Analysis for IT1,
: k
Denote K(z) = {1 = 1,...,kl0 < z; < Ly} and Sy = |J S3;. Also define by =

i=1
;I,;I%HHQ(@” # 0}. From (3.5) and (5.12), we know that for z € S5, Q(z) = —c2, and for
LeSa
e S4)

k
Zd £)(00 - (@) - e~ 36 (2)Ti(e)
=t (5.23)
Z dB.(2) (80 — pi(z:)) — ca — Z 68 (2)Ti(x).
i€EK(Z) €K ()

Therefore,
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by = min{|Q(z)| : Q(z) # 0} > 0.

Since |Q(z)} < 2+ C3, we have

E,(II1,) = > En(7*(z) - T"(z)) Q(2)f(2)

TEX

= Y En(r*"(z) - 7%(z)) Q2)f(2)

zes;

+ Y En(m™(z) - 72(z)) Q(z)f(2)

TeSy

< ¢y Z P{Qn(z) >0 and Q(z) = —c2}f(z) (5.24)

zes;

+(2+e2) Y Po{r™™(z) # 7(z), and Q(z) # 0}/ (z)

LESy

<ez ) Puf{lQn(z) — Q(2) = 2} f(2)

zes;

+(2+0¢) ) Pu{|Qn(z) — Q(z)| = bo}f(2)-

TES,

Therefore, in order to investigate the asymptotic optimality of the empirical Bayes two-
stage selection procedure (7*™,§*", di", d5"), it suffices to study the asymptotic behavior
of

Pod{l@in(z:) — pi(m:)| 2 (br A by Abs Aba)};
Po{[hin (@i + yi) — wi(wi + vi)| = (bs A be) };
Po{|Tin(z) — Ti(z)| = (b7 A bs)};
Po{|Qn(z) - Q(z)| = (bg Ac2)}-

We have

{lein(@:) — i(xi)| = (by A b2 Abg Aba)}
(5.25)
C {|<pm(a:z) — (pz(.'l,‘z)} > (bl Aba A bz A b4), Cin > 0} U {Cm < 0}
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Lemma 5.1 For € > 0, there exists a positive constant ¢;1 (€, i, 4;), such that for any
z € X, when Cjp, > 0, |04 — an| < ginle, o, s) and |ps — pin| < gi1(€, 05, 13), we have
|pin(z;) —pi(z;)| < efor all z € X. This property is called equi-continuity. In other words,

©in(z;) is an equi-continuous function of a; and u;.
Proof: Since pin < p; + i — tin] and oy < o + | — aipn| we have
|Qin hin — Qpis| < ot — Qin| X |pi — pin| + | — pin| + pilos — ain. (5.26)
Therefore,
[in(z:) — @i(zs)]

Qin Mhin + M1 ;b + my
Qi + M1+ 05 +mMy + 24

0 Qi (fin — i) + (M1 + 23) (Qinfin — aipi) + ma(os — agp)
(tin + m1 + z;)(a; + m1 + z;)

O Qi | fhim, — | + M1 |in — a;| + (M1 + ) |Qin thin — i)
(i + my + x;)(0; + my + x;)

IA

Qi Qin | Pin — pi] +ma|ogn — o] + (my + ) |oin — o] - |in — w3
(in, + my + z;) (o + My + ;)
a;(my + x;) | phin — pi) + pi(ma + ;) |oin — oy
(Ofin +m1 + xz)(az +mq + .Z'z)

(VAN

+

(5.27)

ol i — Pin|(Qin + m1 + ;) + M| — |
(ain +mq + iL’Z)(OlZ +mqi + CIIZ)
(m1 + wz‘)|04z' - Otm| : |Nz' — Mz'n| + #i(ml + wi)|ai - ainl
(am +mq + CL‘Z)(OZZ +mq + .’EZ)

+
_ % s — pa 4l — i) - m1 + (M1 + i) | — pinl + (M1 + 23) s
a; +my + 5 Lo (i +my + ) (a; + my + ;)
0 - |pi — fin| 1 (s — prin] + (ma + @)
a; +m (a; +my + ;)

IA

-4 |ai — a¢n|

& - | i = fhin| + o — atin| - (1 + |1 — pin] + 1)
Q; + My Q; + my

IA

From the above we see that for any € > 0, there exists a positive constant g;; (e, o, ;)
such that for any z € X, when Ci, > 0,|o; — | < gin(e, o4, pi) and |p; — pin| <
qi1(€, i, 1), we have |pin(2:) — i(as)| < e.
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From Lemma 5.1, when Cj;, > 0, there exists a positive constant ¢;1 = ¢;1((b1 A b2 A

b3 A bs), a, ;) such that

{l0in(z:) — @i(zs)] > (b1 A ba Abg Abs), Cip > 0}

(5.28)
C {latin — @i > gi1, Ci1 > 0} U {|ptin — 4| > qi1, Cin > 0}
Hence,
Pufl@in(@s) — (i) = (b1 A b2 Abs A bs)}
< Po{|oin — @i| > gi1,Cin, > 0}
(5.29)

+ Pn{|/1‘in - ,U"L" > QilaCin > 0}

Similarly, when Cj, > 0, there exists a positive constant g;» = ¢i2((bs A bg), i, i) such

that
{[Yin (@i + vi) — ¥i(zs + ys5)| > (bs A bg), Cin > 0}

(5.30)
C {|ain — @i| > qizy Cin > 0} U {]pin — ps| > @iz, Cin > 0},
and
Po{|tin(zi + y5) — Wi(zi + yi)| > (bs A bs)}
< P {lain — oi| > gs2,Cin > 0}
(5.31)

+ Pn{l/iin - ,U'z‘ Z q'iZ)Cin > 0}
Using the similar approach, we can obtain the following two lemmas.

Lemma 5.2 For any € > 0, there exists a positive constant g;3(e, a;, y1;) such that when

Cin > 0, |ain, — 04| < qia(e, as, pis) and |psn — p3| < gi3(e, @i, p3), we have, for all z € X,
|Tin(z) — Ti(z)| < e (5.32)

Lemma 5.3 For any € > 0, there exists a positive constant g(e€, @, g) such that when

Cin > 0, oin — 0| < qa(e, @, ) and |pin — | < qa(e, @, p), we have |Qn(z) — Q(z)| < e
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From Lemma 5.2 and 5.3, if we let q;3 = ¢;3((b7Abs), oy, i) and g4 = ga((boAc2), @, u),

we can immediately obtain
Pn{|Tz'n("§) - TZ(‘E)' > (b7 A bS)}

S Pn{|ain - ail Z Qi3,Cz"n, > O}

(5.33)
+ Pp{|pin — pi] > i3, Cin > 0}
and
Po{|Qn(z) — Q(z)| > (bo A c2)}
k
< ZPR{|am — a;| > q4,Cin > 0}
i=1
(5.34)

k
+ anﬂlh‘n — pi] > q4,Cin > 0}

=1
k
+> Po{Cin < 0}.
=1

From (5.29), (5.31), (5.33) and (5.34), it suffices to investigate the asymptotic behavior
of Po{|osn — i > €,Cin > 0}, Po{|pin — ps| > €, Cin > 0}, and Pp{Cjn, < 0} for each
i1=1,...,k, where € > 0.

5.2 Lemmas

In this section, we introduce some lemmas which are helpful to investigate the asymp-

totic behavior. The following lemma is from Hoeffding.

Lemma 5.4 (Hoeffding Inequality) If random variables Zy,..., Z, are i.i.d., such that
a<Z;<b,i=1,...,k, then for any € > 0.

Pn{Z —pu> e} < exp(—2ne?/(b — a)?), (5.35)
where
R —
Z = — Z; = FE(Z).
. ; and p = E(Z)

Proof: This lemma is a special case of Theorem 1 of Hoeffding (1963).
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Lemma 5.5 Let y;, Vs, in and v, be defined as in Section 4, respectively. Then for any

e >0,
a) Pn{ptin — pi < —€} < O(exp(—2ne?)),
b) Pn{pin — pi > €} < O(exp(—2ne?)),
¢) Po{vinvi < —€} < O(exp(—2ne?)),
d) Po{vin — v; > €} < O(exp(—2ne?)).
Proof: We only prove part b. The proof of the other inequalities are analogous.

For each i = 1,...,k,and j = 1,...,n, denote Z;; = (mlgfg_z)/(mlgﬁjl_l). Then

we can see that Z;; = (mq — 1)/(my + Xi; — 1), from which we have 0 < Z;; < 1. For
i=1,...,k,(Zi1, Zs2, - -, Zin) are 1.i.d. Therefore, from Lemma 5.4, we obtain the proof

of part b.

Lemma 5.6 Let C;, D;,Ci, and D;, be defined as in Section 4, respectively. Then for

any € > 0, we have
a) Po{Cin — C; < —¢} < O(exp(—ne?/8)),
b) Pn{Cin — Ci > €} < O(exp(—ne?/8)),
¢) Po{Din — D; < —¢} < O(exp(—ne?/2)),
d) Po{Din — D; > €} < O(exp(—ne?/2)).

Proof: The techniques used to prove the four inequalities are similar. So we only give

the proof of part a. We have
P {Cin — C; < —€}
= Po{(Vin — vi) + (1 — pin)® — (1 — ps)® < —€} (5.36)
< Po{vin — vi < —€/2} + Po{(pin — 1:)(2 — pin — pi) < —€/2}.
Since 0 < pin <1, 0 < p; <1, 0 < (2 — pin — 5) < 2,

Po{(pin — i) (2 — pin — p3) < —€/2} < Po{(pin — i) < —€/4}.
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Thus,
P'n.{ci'n, - Cz S _6}

< Po{(pi — pi) < —€/4} + Po{(vin — vs) < —€/2}
< O(exp(—ne?/8)).

Corollary 5.7 From Lemma 5.6, we have

P.{Cin, < 0} = O(exp(—nC?/8)).

Lemma 5.8 For e > 0,

8

22 1
Pn{|ain - ail > € Cz’n > 0} = O(eXP(_“Tw Cz min(l, —))>

Proof:
P {lain — i} > €, Cip, > 0}

= P {ain — i < —¢, Cip, > 0} + Po{ain — a; > ¢,Cyy > 0},

(5.37)

(5.38)

(5.39)

(5.40)

where Pp,{ain — a; < —€,Cip, > 0} =0, if a; — € < 0. When o; — € > 0, by the Bonferroni

inequality, we have

Pn{ain —a; < —¢€, Cip > 0}
S Pn{(Din - Dz) - (Cz - C'z)(az - 6) < —EC,;}
< Po{Din — D; < —€C;/2} + P {Cin, — C; > €C; /(2(a; — €))}

= O(exp(—ne®*C? /8)) + O(exp(—ne’C?/(32(a; — €)?))

—0 ( exp(— ne;Cf min(1, W)O :

Similarly, we have

P'n,{ai'n, — oy > €, C'in > 0}
S Pn{(Dzn - Dz) - (Gzn - Cz)(az + 6) > GCZ}

< Pn{Dm - D; > €C¢/2} + Pn{Cin —-C; < —GCZ'/(2(CYZ' + 6))}

_ O(exp(— "EZCZ'Z min(1, m))) .
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This completes the proof of Lemma 5.8.

Define e; = min ¢;1, €2 = min ¢;2, €3 = min ¢;3, €4 = 1 mm «;}, and
1<i< i1, 1<i<k diz: 1<i<k dia: 29<i< {os},

e* = min {ej} We see that e* > 0.
1<j<4

In the following theorem we prove the asymptotic optimality of the empirical Bayes

two-stage procedure (7*7, §*", di", d5).

Theorem 5.1 Let {(7*",6*",d;",d3")} ., be the sequence of empirical Bayes two-stage

selection procedures constructed in Section 4. Then,

E,R(T*™, 8", di", d5™) — R(TB,QB, (jB, ng) = O(exp(—c*n)) (5.43)
e {2 gz R
where ¢* = mm( = 11r<1r1i121]c =, 1I<ni1£k( =+ min(1, 5o )

Proof: By the definition of e* and C*, from Lemma (5.5) to (5.8), we have
Po{|pin(xi) — @i(x:)| = (by Aba Ab3 Aby)} = O(exp(—c*n)),

Po{|tin(zi + yi) — ¥s(zs + y3)| = (bs Abg)} = O(exp(—c*n)),
(5.44)

Pr{|Tin(z) — Ti(z)| = (b7 A bs)} = O(exp(—c*n)),

Po{lQn(z) — Q(2)] = (b A c2)} = O(exp(—c"n)).

We obtain
EnR(T*n, é*na d;n’ ,.;n) - R(TB? éB7 4113, ‘1123)

< Oexp(-c'm)k Y f(z)

TeX

k +00
+ O(exp(— Z Z l Z fi(yil@,ai,ﬂi)]f(@),

TeX i=1 ~y1=0 (5'45)
+O(exp(-c'm)k? Y f(2)

TeX

+ O(exp(~c"n) 3 (24 ¢2)f(2)

Tex
= O(exp(—c*n)).
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This completes the proof of the theorem.
6. Simulation Study

A simulation study was carried out to investigate the performance of the proposed

empirical Bayes two-stage selection procedures for small to moderate values of n.

For given past observations (X; = (Xu,...,Xg;),j = 1,...,n), R(t",¢",d},d?) is
the associated conditional Bayes risk of the proposed selectiop procedure (7", §,,d7T,ds).
Then we use R(7",8",d%},d3) — R(7B,52,dP,dP) as an estimator of the difference
E,R(", ", dt,8%8) — R(rP,8",d7,d7).

We consider the following case in which k¥ = 3. That is, there are 3 Bernoulli treat-
ments 1, Ty and w3, and we would like to make a two-stage selection using the inverse

binomial sampling scheme proposed in Section 4.
The scheme of the simulation is described as follows:

(1) For each n and for each i = 1, 2, 3, generate independent random variables
X1, Xi2,...,X;n as follows:
for 7=1,...,n,
(a) first generate ©;; from a Beta distribution with density h;(6;|cu, 1)

b) then generate X;; from a negative binomial NB(m,0;;) distribution.
J 4]

(2) Based on the past observations (X;,j = 1,...,n) and the present observations
X =(X1,...,Xx) and Y = (Y3,...,Y%), we construct the empirical Bayes two-stage

selection procedure (7*",§*", di", d5™) and compute the conditional difference

D(n) = R(T*",8*", di", &5") — R(r", 6%, d7, 7).

(3) Repeat step (1) and (2) 5000 times. The average of the conditional difference on the
5000 repetitions which is denoted by D(n), is used as an estimator of the difference
E,R(T*",§*", di", ds™) — R(78,88,dB dB). The estimated standard error, denoted
by SE(D(n)), is also computed.

Tables (1) and (2) give the results of this simulation study on the performance of

the proposed empirical Bayes two-stage selection procedures. In both cases we choose
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0o = 0.7,¢1 = co = 0.05. m; = mo = 20, and o1 = ag = ag = 3. Furthermore, we use

p1 = po = pg = 0.6 in Table 1 and p; = 0.67 pe = 0.69 and p3 = 0.71 in Table 2.

From these results, we see that D(n) decreases to zero very rapidly in both cases,

which coincides with theorem 5.1 that the convergence rate is O(exp(—c*n)), ¢* > 0.
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Table 1

D(n)
0.04200000
0.01767500
0.00244500
0.00076700
0.00110000
0.00049980
0.00051410
0.00042840
0.00029078
0.00019035
0.00016365
0.00016000
0.00009243
0.00008065

Table 2

D(n)
0.0576700
0.0124585
0.0075045
0.0024041
0.0005337
0.0008987
0.0009491
0.0004567
0.0004036
0.0003893
0.0001930
0.0001525
0.0000012
0.0000000

29

Performance of the selection rule
when p; = po = p3 = 0.6

SE(D(n))
0.000456063
0.000045031
0.000003197
0.000001487
0.000003565
0.000000801
0.000000265
0.000000943
0.000000101
0.000000127
0.000000081
0.000000037
0.000000012
0.000000009

Performance of the selection rule
when p; = 0.67, pe = 0.69, us = 0.71

SE(D(n))
0.000332773
0.000080474
0.000082546
0.000001701
0.000000883
0.000000967
0.000003398
0.000000698
0.000001782
0.000000979
0.000000135
0.000000051
0.000000011
0.000000000
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Graph for Table 1
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Graph for Table 2
p1 = 0.67, puy =0.69, uz =0.71
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