A SELECTION PROBLEM IN MEASUREMENT ERROR MODELS
by
Shanti S. Gupta and Xun Lin
Purdue University

Technical Report #97-18C

Department of Statistics
Purdue University
West Lafayette, IN USA

October 1997



A Selection Problem in Measurement Error Models*

by
Shanti S. Gupta and Xun Lin
Department of Statistics Department of Statistics
Purdue University Purdue University

West Lafayette, IN 47907 West Lafayette, IN 47907

Abstract

This paper deals with a selection problem for linear measurement error models. A
selection procedure is constructed, and its corresponding asymptotic optimality is also
investigated. It is shown that with the assumption of the existence of the a-th (a > 2)
moment, the expected risk of the proposed selection procedure converges to 0 with the
rate of order o(n~(*/2=1), Tt is further shown that when the moment generating functions
of the corresponding variables exist, the expected risk of the proposed selection procedure
converges with exponential order O(e™*'") under mild conditions, where c* is a positive
constant.
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1 Introduction

Measurement error models commonly begin with an underlying model where one or
more of the independent variables are measured with error. The distinguishing feature
of a measurement error problem is that we cannot observe those variables which are
measured with error directly. The goal of measurement error modeling is to obtain
understanding from the model. Attainment of this goal requires careful analysis.

This selection problem is from statistical consulting. When I (Xun Lin) was a statis-
tical consultant in the summer of 1996, one of my clients came up with a problem which
can be simplified as follows.

Suppose we have k treatments II;,2 = 1,...,%k and n observations from each treat-
ment. For each treatment II;,z = 1,...,%k and each observation j = 1,...,n, we have
the following model:

Y, = Boi + PuXi; + €5, Wiy = X5 + U, (1)

where {(Xij,U,-j,e,-j),i < j < n} are independently but not necessarily identically
distributed random vectors with means (0,0,0) and variances (0gzgi, Oyui, Ocei). For
t=1,....,kand j = 1,...,n, (Xij,Uij,¢€;) are independent to each other. But Xj;
cannot be observed, instead we can only observe (W;;,Y;;). We assume that for each i,
Ouwi 18 known and o > 0.

A treatment II; is said to be the best if the associated slope parameter By; is the
largest among the k slope parameters, otherwise the treatment is said to be nonbest.
The goal of this selection problem is to select the best treatment from the % treatments.

Let Q = {81 = (b11, P12, ..., Pk)|Bin € R,1 =1,...,k} be the parameter space. Let
a = (a1,...,ax) be an action, where a; = 0,1, ¢ = 1,...,k. When action a is taken,
a; = 1 means that treatment II; is selected as the best treatment; otherwise a; = 0 and II;
is excluded as the nonbest. Fori=1,...,k,let W; = (Wiy,...,Win), Y; = (Ya,..., Yin),
X=(X1,...,Xk),and Y = (Y1,...,Y%). Let x be the sample space generated by (V_V Y).
Since the true order of fi1,..., Bk is unknown, we denote By} < By < -.. < Py For
simplicity, we assume that Sy — Bijx—1) = 26 > 0.

A selection rule d(w,y) = (di(w,y),...,dr(w,y)) is a mapping defined on y, where
d; (w y) is the probability that given W=w and Y =y, II; is selected as the best. Also,

Zz=1 di(w,y) =1, for all (w,y) € x.

We consider the following loss function:

L(Br,0) = { 1, if a nonbest treatment is selected, @)
12/ = 0, if the best treatment is selected.
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2 Formulation of the Selection Procedure

The population moments of (W;;, ¥;;) satisfy

(Bwis yi) = (0, Bos), (3)

and

(waia Twyiy Uyyi) = (0'.1;.1:2' + Tuuiy :812'0'1:,.1:1'7 ;611'20'1:.1:2' + a'eez')- (4)

The sample means (W;,Y;) and the sample covariates (Swwir Swyi, Syyi), where, for ex-
ample,

Wi=13w;, (5)
n j=1
1 & - .
Swyi = n———l— Z(VVU - m)(KJ - Y;)a (6)
Jj=1

will be the bases of our selection procedure.

We use estimators of the unknown parameters by replacing the unknown population
moments with their sample estimators. For the quantities defined above to be proper
estimators, o,,; must be positive. We have Ozzi = Swwi — Ouyi When Syu: — Ouui 18

positive, otherwise we set ¢,; = S;lll-Siyi. We also have

(7)

ﬂ" - (Swwi - O'uui)—lswyia if Swwz' = Oyui > 07
"7 ) SaiSuuis otherwise.

Since we take n samples from each treatment, our selection procedure will be d, (w, y)=
(din(w, ), dan(w,y),. .. »din(W,y)), where

din(w,y) = 1, if By is the largest among the & slope estimates, (8)
e 0, otherwise,

when W =w and Y = y are observed.



3 Performance of the Selection Procedures

In this section we study the performance of the selection procedures. We first analyze
the expected risk of the proposed procedure.

Definition 1. A sequence of selection procedures {d.(w,y)}s, is said to be asymp-
totically optimal of order e, if E(W’X)L(@, dn(w,y)) = O(en), where e, is a sequence of
positive numbers such that lim, .. e, = 0.

Denote P, to be the probability measure generated by the random observations
(W,Y), and for each (w,y) € x, let

= { |:Bh = Igagiﬂlj ﬂl[k]a 1=1,.. '7k}7 (9)
and
i = {i|fy = lré%ﬂ;j, i=1,...,k}. (10)

Then, the expected risk of the proposed selection procedure is

EMDL(B, du(x,7)) (11)
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k i Ogzj
+Z Z Pn{Swwj"‘o'uujS 2]}

t=1 j=1,j%#1
k k ) Ozt
S Z Z Pn{ﬁli—ﬂli>6)5wwi_a-uui> 2 }
=1 j=1,j%1
7 J
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S 2kZPn{IIB11 - ,Bli| > 57 S‘wwi — Oyui > ;‘Il}
=1
k —
2k Pn Swwi = Yuu < == .
T2 P Ouwi S -}

From above we observe that it suffices to analyze the convergence rates of the fol-
lowings two sequences:

Ozt 5~ Ozxi
Pn{Swwi — Oyui S _2-'}7 Pn{lﬁlz - ;BI'il Z 67 Swwi — Oyui > 9 } (12)

We analyze the rate of convergence under the following conditions.

3.1 When The o-th Moment Exists (a > 2)

In this subsection we suppose that the a-th (o > 2) moments of (X;;, Uyj, €;) exist, that
is,

E|Xi;|* <00, EUyl* <oo, Ele;l® < 0. (13)

~ We will show that the expected risk of the proposed selection procedure converges to 0
at the rate of o(n=(@/2-1),

We introduce some useful lemmas. The first lemma is well known, a similar result can
be found in Baum and Katz (1965).

Lemma 1. Let X3,..., X, be independent random variables with mean 0. Suppose for
a fixed number o > 1, E|X;|* < 0o, for i = 1,...,n, then for any € > 0,



P{IY. Xifn| 2 €} = o). (14)

As a consequence of Lemma 1, we have

Lemma 2. Let Xi,..., X, be independent random variables, with mean EX; = y and
variance VarX; = o2, for i = 1,...,n. Alsolet X = 1 ¥ X; and S? = L= °(X; — X)2
Suppose for 7 = 1,...,n and a fixed number o > 2, F|X;|* < oo, then for any e > 0,

P{IS~ 0% > €} = ofn=(/7D) (15)
Proof.
PSi~0% 24} = P{ln—i—TéXf—n—T_L—TXZ—Gél > ()
< P T X - (i 40N 2 5)
_ 2 2
$P{ox - T >

1 9 9 9 n—1le
= —_ L — > —
P2 = (4 +0%) 2 225
- 1
2_ 2> S _ 2.2
+P{X* =4l 2 5 = ~0%}
1 €
= PEY( - (R +0Y)l 2 5)
- €
+P{IX* - 2 7}
= I1+.[2, (17)

for n large enough, that is, when n > max (2, [%] +1), wehave 2=1£ > £ and £— 102 >
3- From Lemma 1, we have

and



= P{IX* -2 1)
P{X +u)(X —w) 27 and (X +p)> (20 +1))
+P{(X +p)(X —p)| 2 7 and (X +4) < (2u+1)}

P{X —p)>1}+ P{4(2# + DX =) > €}
o(n"(""l)).

IRVAN

From Lemma 2, we can see that

P{S’wwi — Oyui S O-;:Bi} = P{S‘wwi — Cywi S _G-I.’Bi}
= o(n~(®/21),

Moreover,
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Forany:=1,...,k {W;Y,;,7=1,...,n} are independent random variables with
E(W;;Y.;) = B1i04zi- By Holder’s inequality,
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E|W;Y;5|°? < \JE[Wy|=E|Y;]* < oo, (23)

therefore, we have

12 n—1 oz
Jl = Pn{l— Z(MJY;J - ﬂliazxi)l > 6 } (24)
n i n 6
= o(n(~2/2-1), (25)
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= ﬁOiVI/z + _:LW'Z + ﬂlinﬁz + 13120;27
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Then by Lemma 1, we have

-1 Ozxi o(n"(““l)) if ,30' # 0
> D = ; i 7Y 28
Pl 2 =657} {0, if fo: = 0, (28)
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6
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J=1
— O(n—(a/Q—l)).

Hence, by combining the above arguments, we have the following theorem.
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Theorem 1. The selection procedure d,(w,y), defined in (8), is asymptotically optimal
with convergence rate of order o(n~(*/2=1)) under condition (13). That is,

3.2 When The Moment Generating Function Exists

In this subsection we suppose that the moment generating functions of {X7,UZ, €%
exist in a neighbourhood of the origin, that is, for -T' <t < T,

EeXh < 0o, EeVh < oo, Ee'i < co. (36)

where T is a positive constant.
We first introduce the following lemma, which can be found in Petrov (1995).

Lemma 3. Let {Xj,...,X,} be independent random variables with mean EFX; = 0,2 =
1,...,n. Suppose there exist positive constants g¢,...,g, and T such that

EetXi <92 (1=1,... n) (37)

for —-T <t<T. Let G, = 5.~ gi, then

n —(«%/2Gn) if0<z<G,T
P Xi|l>z) < ¢ L ST 38
( ; |22) < {e—(rrzm, if 2> G,T. (3%

The following lemma clarifies the probabilistic meaning of the conditions of Lemma 3.

Lemma 4. Let X be a random variable with mean FX = 0. The following two
assertions are equivalent:

(I) There exist positive constants g and H such that

EetX < 9t/2 for —-H <t< H, (39)
(IT) There exists a positive constant 7' such that
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Ee* < 00 for —-T <t<T. (40)

Proof. It is clear that (I) implies (II). We now prove that (II) also implies (I). If (II) is
fulfilled, then the random variable X has the moments of all orders, and the following
relation holds:

Lo22 4 o(s2) (41)

tX _
log e+ = 5

as t — 0, where 0> = EX?. For any constant g > o2, the inequalities log Ee!X < gt2/2
and EeX < e9%°/2 hold for all sufficiently small ¢, that is, (I) is true. This completes the
proof of Lemma 4. As we can see in the proof, we can always set g = 202

We further assume that the 4-th moments of {X;;, Uj;, €;;} are bounded, that is, there
exists a positive constant C such that

EX} < C, EU; < C, Ee; < C. (42)

We can see from (42) that EW}, EY;} and E(W;;Y;;)? are all bounded.

i)

We analyze Pr{Sywi — Cuui < 255} first.

Pn{Swwi — Ouug S 0-32::1:2'} (43)
S Pn{ISwwi —wail 2 _O-:;a:i}
n—le
< ol =
= P {l Z waz = n 2}
1

P > £ - 1o
: {|m1_2 ~o%)

= P{I—ZW 7wu)| 2 7}

+P{|W|>f}

= .[{1 + I{Q, (44:)

for n large enough, that is, when n > max (2, ] + 1), we have —;1—1 and o >

%
. Since for j =1,...,n, E(Wu Owwi) =0 and for -T/2<t<T/2,

oo
3=

€
> ;a
9

11



EetW'?J' S Eelt(X.'j+U.'j)2| S E(e2|tlx'2-7€2|t|U2) E(62|t|X‘J)E( 2|t|U'-2]-) < 0. (45)

By Lemma 3 and Lemma 4, we have

Ky = P{|> 32 (W3 = ow)] 2 5} (46)

i=1

|

e~ (€/326n)  if ¢ < 2T G, /n,
e_(Te/S)n, if e > 2TGn/n’

where G, is twice the sum of the n variances of (T/ij ~ Oywi), J = 1,...,n. Since

(EWE, 5 = .,n) are bounded, G, = O(n). Therefore,

=P{|—Z(W2 Tuwwi)| > } (47)

]'—1
e_(n252/32Gn)’ if € S 2TGn/n’
e=(Te/8)n if € > 2T'Gyn/n,

= O(e™l™),

where ¢} is a positive constant. Similarly, for -7 <¢ < T,

EetWi < BelWil < BeldWVE+D) » o, (48)

K, = P{|W|>\/—} (49)
= O(e-cf‘2 )

where c}, is also a positive constant.

Next we consider Pn{l,éli — Bl = 6, Swwi — Ouwui > 225}, We have

A Czai =
Pn{lﬂl'i - ﬂlil Z 63 S'wwi — Oyui > ) } (OO)
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1 n Opxi

S P{l—ZI/Vz] Y _113150zzi|25 6 }

j=1
T 1 Oxzi
ﬁuVViz - lﬂua'uuil > }
Orxi
+P {| /311 Z — 1,812'(0-2:1:1' + Juui)l 2 ) 6 }
= Ly + L+ L3-

For any i = 1,...,k, {W;;Y;;,7 = 1,...,n} are independently but not necessarily
identically distributed random variables. By Cauchy-Schwarz’s inequality, we have, for
-T/2<t<T/2,

EeWi¥i < EelWi¥il < el - > < VEHE B < o, (51)

Besides, for each ¢ and j, the variance of W;;Y;; is bounded, therefore,

1 & n—1 oz

Ll = Pn{I; Z(I/VUY;J - ﬂlia:z::z:i” Z 5 6 } (52)

7=1
= O(e™h™), (53)

n

where c}, is a positive constant. Next we analyze L, and L3. Similarly,

-1 Ua::z:i

Ly < Pu{|Bo:W; ) (54)

n
I1 ]‘ .'L‘:L‘z
+Pufla] 2 /" —1 "” V4 P{[Wi] > "24

/ > -1 O-xm / -1 O-:L‘IZ

- 1 -1 Ozzi
+Pn{|,311(U12 - ;Uuui)| > 6 }
= O(e™L"), (55)

- n 24

and

~1 Ozzi

=) (56)

= O(e—cLan), (57)

P {| /BIZZI/ /811 azzz +0uuz)
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where ¢}, and ¢, are positive constants. Hence, by the above argument, if we set
¢* = min(ck,, ¢k, 5,1 €L 1 €L, ) then ¢ > 0. We have the following theorem.

Theorem 2. The selection procedure d,(w,y), defined in (8), is asymptotically optimal
with convergence rate of order O(e™°"") under conditions (36) and (42). That is,

We consider two special situations next.

Two special situations.

1. {(Xi,Usj,€;5),1 < j < n} are normally distributed. In this case, {(Xi;,Usj,€i;)}
are i.i.d. N3((0,0,0),diag(ozzi, Ouuiy Teei)). Since (ij/omi, Ufj/aum-, 62?3-/0'551-) are x? dis-
tributed and the moment generating functions of them exist in a neighbourhood of 0,
and the 4-th moments of {(X;;, U;j, €;;)} are also bounded, by Theorem 2, we have that,
in the normal case, the selection procedure d,(w,y), defined in (8), is asymptotically
optimal with the rate of convergence of order O(e=*"").

2. {(Xi,Usj,€),1 < j < n} are bounded. Then conditions (36) and (42) always hold
and therefore, the selection procedure dn(w,y) is asymptotically optimal with conver-
gence rate of order O(e™*"").

4 Simulations

We carried out a simulation study to investigate the preformance of the selection proce-
dure d,. The expected risk E(W’}—’)L@, dn(w,y)) is used as measure of the performance
of the selection rule. For any observations (W,Y), let

1, if we make a wrong selection,

0, if we make a correct selection. (59)

D(W,Y) = {

Then, by the law of large numbers, the sample mean of D(W,Y), based on our
observations, can be used as an estimator of the expected risk E(W’X)L(@, dn(w,5))-

The simulation scheme is described as follows:

1. For each j = 1,...,n and each i=1, 2 and 3, we generated independent random
observations (X;, Uij, €;) from multivariate normal N3((0,0,0)7, diag(0zzi, Cuuiy Teei) )-

2. Let W/ij =X + Uij and Yij = Boi + ,BliXij + €.

14



3. Based on (W;;,Y;), we obtained the estimators of $y;, then made the selection and
computed D(W,Y).

4. Step 1, 2 and 3 were repeated 4000 times. The average of D(W,Y) based on the
4000 repetitions, which is denoted by D,, is used as an estimator of the expected risk

EYD L8, dn(w,y)).

The results are listed for the case where

Ozxl = Ogz2 = Ogz3 = 17
Ouul = Oyu2 = Ouu3 = 1,
Oecl = O¢e2 = Oee3 = 0257
1801 = 1602 = 1603 = 07
P11 =0,p12=1,013=2.

and

n =5,10, 15,20, 30, 40, 50, 100.

From the results of the simulation (see the last page), we can observe that the values
of D, decrease quite rapidly as n increases, for n < 100. This supports Theorem 2 that
the rate of convergence is of order o(e=°"").
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