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Abstract
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We construct the empirical Bayes tests d, and 6,, and prove that both of them have a
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§ 1 Introduction

Let X denote a random variable having density function
A(0) ’

where a(z) is a function on [0, 00), and continuous, positive for x > 0, A(0) = f¢ a(z)dr <
oo for every 6 > 0, 0 is the parameter, which is distributed according to an unknown
prior distribution G on [0, o).

We consider the problem of testing the hypotheses Hy : 6 < 0y verses H; : § > 6,
where 6y > 0, is a known constant.

Let a = ¢ be the action in favor of H;. For the parameter 6 and action a, we use the
loss function

l(0, (1,) = G(OO — 9)[[0590] + (1 — a) (0 - 90).[[9>90]. (12)
Assume that
/ﬂ 0dG(6) < oo. (1.3)
Define -
ag(z) = / 40960,
and

o §
Ye(x) = / O
By Fubini Theorem,

/0oo a(z)ag(z)dz (1.4)
= [ e [ ﬁdG(ﬁ)dx
/ / ) jz) Io<z<qdzdG(6) = 1
and
/ ” a($)¢c(x)dx (L5)
[t [ A(e 2 0O
/ / ) Z((? Io<z<gdzdG(6)

- /0 8dG(8) < co.
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Let W(z) = 6pac(z) — ¥e(z). Using (1.4) and (1.5), we have
/0 W (2)|a(z)dz (L.6)
< /0 " Boac(z) + ve(z)|alz)ds < co.

A test §(z) is defined to be a measurable mapping from (0,00) into [0, 1] so that
d(z) = P{ accepting H1|X = z}, i.e., 6(z) is the probability of accepting H; when
‘X = x is observed.

Let R(G, 6) denote the Bayes risk of the test § when G is the prior distribution. Then
R(G, §) can be expressed as

R(G,8) = Co+ /0 ~ /0 ™ 5(x)(00 — 6) f (]0)dzdG(8) (L.7)

= Co+ [ 0@ [ (60~ Q)ﬁd(}’(e)]a(x)dx

— Co+ /O ~ 5(2)[Boca (@) — b (2)|a(z)dz
= Cg+ /Ooo o(x)W (z)a(z)dz
— Co+ /0 " §(2)[8 — da(@)]ac(@)a(z)dz,

Where [o's)
Co = /0 (0 — 00) Iip>0,dG (0),

and

Here, ¢c(z) is the posterior mean of  given X = z. ¢g(z) is continuous and increasing
in z.
From (1.7), we see that a Bayes test ¢ is determined by

1 if W(z) <0
d¢(z) ={ 0 if W%x; >0 (1.8)

_ 1 if ge(z) =6,
=10 if golz) < by

The minimum Bayes risk is

R(G,65) = Co + /0 §o(2)W (z)a(x)dz. (1.9)
To exclude trivial cases, we assume that
¢G(O) < 6y
1.10
{ G(6o) #1 (1.10)



From (1.10), we see that ¢g(z) is strictly increasing and there exists a unique point
be < 0y such that ¢g(bg) = 0y. ¢c(zr) < Oy for z < b, and ¢g(z) > 6y for z > bg.
Therefore, the Bayes test d¢ can be represented as

_ 1 if iL‘ZbG
56(””)_{0 if 2 < be.

We assume that, for some constant B > 0,

sup |e¥(z)| < B, (1.11)
0<z<p+1
where i = 0,1,---,r and r > 1. Note that (1.11) implies that G'(z) exists for 0 < z <
6o + 1. Furthermore, we assume that

G'(b) # 0. (1.12)

We will deal with this testing problem via the empirical Bayes approach. The empir-
ical Bayes approach was introduced first by Robbins (1956, 1964). Let X;, Xs,---, X,
denote the observations from n 1ndependent past experiences. Let X be the present ob-
servation. Denote X, = (X1, Xz, -+, Xn). An empirical Bayes test 6, (X, X, n) is defined
to be the probability of accepting H; when X and X, are observed. Let R(G, 4, |X )
denote the Bayes risk of 4, conditioning on X, and R(G, §) = E[R(G, §]X,)] the overall
(unconditional) Bayes risk of 4. _ N

Since R(G,d¢g) is the minimum Bayes risk, R(G, 6,|X,) — R(G,d¢) > 0 for all X,
and for all n. Thus, the regret R(G,d¢) — R(G, dg) > 0 for all n. The nonnegative regret
R(G,6,) — R(G,d¢) is often used as a measure of performance of the empirical Bayes
test of 9,,.

Empirical Bayes problem for the Uniform (0, 6), a special case of (1.1), was studied by
a number of authors: Fox (1978), Van Houwelingen (1987), Nogami (1988), Liang (1990)
and Karunamuni (1999). For the distribution family having density (1.1), Gupta and
Hsiao (1983) considered the empirical Bayes rules in the selection problem formulation,
Datta (1991) studied the empirical Bayes rule in the estimation problem formulation.

In this paper, we consider the empirical Bayes rule in the testing problem formulation.

For clarity, we consider the different cases of a(z):

Case 1 : a(z) — ag, where 0 < a9 < 00, as z ] 0,
Case 2: a(z){0asz |0,
Case 3: a(z) tooasz 10,

Case 4: a(z) > 0asz |0,



Case 5: a(z) 20 asz |0,

where 1 (or | ) stands for “goes to increasingly” (or “goes to decreasingly”, respec-
tively).

Although Case 2 is the special case of Case 4 and Case 3 is the special case of Case
5, our approach (or result) is a little different between Case 2 and Case 4. Also our
approach is different between Case 3 and Case 5. So we treat Case 2 and Case 3 as the
separate cases.
Define
G, = {G : G satisfies (1.10), (1.11) and (1.12)}.

For some £ > 0, L > 0 and by > 0 in Cases 2, 3, 4, 5, by = 0 in case 1, define

Gs = {G : G satisfies (1.10) and (1.11),bg > by, min |W'(z)| > L},
merG(g)

where Ny, (§) ={z:0V (bg — &) <z < (bg + &) A 6y}. Then we can construct a Bayes
test d,, such that its regret has a convergence rate of order O(n_%ﬂ) or O(n"%e; 1)
(different rates in different cases) for any G € G;, where ¢, is any prespecified (large)
positive sequence such that ¢, — 0 as n — co. And we can also construct another
empirical Bayes test d, such that its regret has a uniform convergence rate of order
O(n—af—.h) over the class G,. Taking a(z) = 1, we would get that supgeg, R(G,8) —
R(G,$) = O(n“ﬁ), which is a result obtained by Karunamuni (1999). But we exclude
the condition that bg falls in some known interval [0, o], where py < 6y is a known
constant.

The paper is organized as follows: §1 gives the introduction; §2 constructs the em-
pirical Bayes test d,; §3 proves that the empirical Bayes test has a good asymptotic
property. §4 proves the lemmas stated in §3.

§ 2 Construction of Empirical Bayes Tests

We use the kernel method to construct the empirical Bayes tests. Let Ky(y) be a
Borel-measurable, bounded function vanishing outside the interval [0, 1] such that

1. 1if j57=0
J — ’
and let y
K (y) ——/0 Ko(s)ds. (2.2)

We may let B; be a positive constant such that |Ko(y)| < B; for all y € [0,1]. Let ¢,
be any (large) positive sequence such that ¢, — 0. Without loss of generality, assume
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€n > @. Let u, be a positive sequence such that v, < 1 and u, — 0 as n — o0o. For

any = € (0,00), define, for Case 1, Case 2 and Case 4,

on(z) = ; a((f:)“) (2.3.1)
Wo(z) = %j; 5%((;‘(—11;—_‘)’”) - %,é %—) (2.3.2)
and for Case 3 and Case 5,
o)== e (2.41)
Yn(z) = —%é%ﬁlhﬁg%ﬁi (2.4.2)

Let Wo(z) = Gpan(z) — Yn(z). We shall show later that W, () is an asymptotically
unbiased and consistent estimators of W(z) (Lemma 3.1). For any G € G;, we propose
an empirical Bayes test 6, (z, X,,) by

P 1 if (z>6p) or (dn <z <6y and W,(z) < 0), (2.5)
" 10 if (z<dy)or(d, <z <6y and W,(z) > 0), )
where
0 for Case 1,
d, =< max{z:a(z) < 7.} for Case 2 and Case 4 , (2.6)
max{z : a(z) > ;-,a(z) > ¢} +u for Case 3 and Case 5 ,

2rtl
and 7, = €x* . Since 1, — 0 as n — oo, we know that d, — 0 as n — co0. Suppose N

is the smallest positive integer such that bg > dn,. Then bg > d, for n > Ny. When we
discuss d,,, we always assume that n > Ny without further mention in this paper.

Note that W(z) < 0if z € (0,bg); W(z) > 0if z € [bg, bp). Then the conditional
regret of 4, can be expressed as

R(G,6,X,) — R(G,5) = /0 * (60 — )W (2)a(z)ds (2.7)
= /dic Iw,()<qW (z)a(z)dz

)
+/ Iiw,(@)>q|W (z)|a(z)dz
ba



and the unconditional regret of 8, becomes
b
R(G,5,) - R(G,8) = /d C P(Wa(z) < OW(2)a(z)dz  (2.8)

+ /: P(W,(z) > 0)|W (z)|a(z)dz.

For G € G, we also propose another empirical Bayes procedure 4, by

(Sn _ { 1 if (.’I,' > 00) or (bo <z < 00 and Wn(x) < O)a (29)

0 if (z<bo)or (b <z <6bpand W,(z) > 0).

Then the unconditional regret of §,, becomes
- b
R(G,5,) — R(G,§) = /b * P(Wi(z) < OW(z)a(z)dz  (2.10)
0 00
+ /b P(Wa(z) > 0)|W (2)|a(z)ds.
G

In the following section, the convergence rate of unconditional regret of 8, for every
G € Gi and the uniform convergence rate of unconditional regret of 4, over G, are
considered.

§3 Asymptotic Optimality of §, and J,

The convergence rates of §, and 8, depend on the properties of W (z) and W,,(z). The
more information about W(x) and W, (z) (including a(z)) is used, the more accurate
rate we will get. So firstly, we dig out a few properties of W,(z) and W(z). That is a
few lemmas, whose proofs are left to §4. Then we state a well-known fact. Following
that, two theorems about asymptotic optomalities of 6, and &, are given.

Note that |
Wa(z) = bpan(z) — Pr(z) = - Y V(Xj,z,n), (3.1)
j=1

where, for Case 1, Case 2 and Case 4,

90 -~ T K()()—{JJ—E) Kl(}—(lu_—m')

V(X;,z,n) = X — , 3.2
Erem =TT X T elX) 32
and for Case 3 and Case 5,
00 — K z—X; K z—X;
V(X zm) = - 0%, Kol52) | KR (3.3)

v aX) | a(Xy)



Let W(z,n) = E[V(X;,z,n)] and Z;, = V(X;,z,n) — W(z,n). Then we have

Lemma 3.1 W(z,n) can be expressed as
W(z,n) = W(z) + u"W(z,n),
where W(z,n) is some function such that for all x € [d, A by, 0],

290 (’I‘ + 2)

+1
W (z,n)| < ) BB; = B,.

Lemma 3.2 For z € [0,6o], [W(z)| < 26,B.

(3.4)

(3.5)

Lemma 3.3 For any fized n, Z;, are i.i.d., and for x € [d, Aby, 0], EZ;,, = 0,

2 2 B3
=FE7: <
In "= ya*(x)’
and E|Z. |3 2(6,B 1
Bzl 320(,B+Bz+—( 021t ),
o2 ua*(z)

where By = (200 + 1)B;vB, and

“(z) = min{a(s):z <s<z+u} for Cases 1, 2, 4,
a\r) = min{a(s):z —u<s<z} for Cases 3, 5.

From Lemma 3.3, we see that

P(Wy,(z) > 0) = P(—\/;_;?ézjn > —y/no?W(z,n)),

and
1

Based on Lemma 3.1, we obtain the following useful result:

Lemma 3.4 For x € [d, A by, 60},

W(z) > 2Bou" = W(z,n) > 0 and WWE:I(U:,E;) <2,

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)



and
_W(z)

W(z,n)

W(z) < —2Byu” == W(z,n) <0 and | | <2. (3.12)

Lemma 3.4 allows us to replace W(z,n) with W(z) in (3.9) and (3.10). That makes
things a little easier since we will see that W (z) does not depend on = and has a few
good properties.

The above four hold for any G € G; or G,. Note the bounds in above lemmas do not
depend on G. So they are the uniform bounds over G; and G,. Next two lemmas give
the results related to some G € Gy, which will be used only when we consider 4,,.

Lemma 3.5 For any G € Gy, there ezist cg1 and cgy such that 0 < cg1 < bg < cga <
o, and for all x € [ca1, caa),

[W'(z)]| > 5;((:2)) (60 — be) = Bg1, (3.13)
for all z € [0, ce1] U [caz, 6o),
IW(.’E)I Z W(CGl) A |W(CG2)| = BG2- (314)

Lemma 3.6 For any G € G, let Ug = max{a(z) : ¢c1 < = < cg2}. Then there
exists an integer Ni(> Nyp) such that for n > Ny,

o
/d Ijw(z)\s2Byuria(7)dx < 4B2 Ba1Ugu". (3.15)

Let Lg = min{a(z) : %2 < z < cgy + 25262}, Then there exists an integer Na(> Ni)
such that for n > Ny,

o (z) { >Lg forz € [ce,caal,

> 1, forr € [dy,dn V cc1] U [cga, 6o)- (3.16)

When we consider the uniform rate of convergence of [R(G, §,) — R(G, §)], we need
the following two lemmas.

Lemma 3.7 For all G € Gy and all z € [0V (bg — £), (bg + &) A ),
W'(z)| > L, (3.17)
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for all G € G and all x € [0,0V (bg — )] U [(bg + &) A 8y, 6]
|W(z)| = LS. (3.18)

Lemma 3.8 Let U, = max{a(z) : by < z < 6y}. Then there ezists an integer Ny
such that for all n > N,

fo 4B,U
Iiw (@) <2Byurja(z)dz < 2y
bo L

Let L, = min{a(z) : & < z < 6y + 1}. Then there exists an integer Ny > Ny such
that for allm > Ny and x € [by, 6o)

. (3.19)

a*(z) > L, > 0. (3.20)

Next we state a general well-known result. It is about the non-uniform estimate of
the distance between the distribution of a sum of i.i.d. random variables and the normal
distribution.

Result Let X;,Xs, -, X, be i.i.d random variables, EX; = 0, EX12 = o% > 0,
E|X:)® < 0o. Then for all x

|Fu(z) — ¥(z)| < AL

~ V(A2
Here U(z) is the c.d.f. of N(0,1), F,(z) and p are given by
1 & E|X,?
Fn = —— . < , = e—
@ =P > X <a), o=

Remark The above result can be found in Petrov (1975, pp125 Theorem 14) or
Michel (1981). Here A is independent of n. Michel proved A < 30.54.

From the above result, we see that, for any fixed n,

ifx >0,
1 n
P(——= X:>zx 3.21
Gom 2 %> (3.21)
= 1-F,(z)
P
< 1—-v 4+ A——
S Y AT
3
< 1—\Il(a:)+AE|X1|

Vnlz|ed’

10



ifx <0,

\/_ Z X; <z (3.22)

\Il(x) + A

U(r)+ A

IA

p
V(L +|z])?
E|Xi]?

Vnlz|o®

A

Now, we prove our main results. The first one is related to J,:
_i
Theorem 3.9 Let v = u(n) = n~% for Cases 1, 2, 8, 5 and n~ e, > for Case
4. Then we have, for every G € Gy, as n — oo, for Case 1, Case 2, Case 3, Case 5,
lim n#¥1[R(G, 6,) — R(G, )] < 16B}Bs1Us + 2Bg < oo, (3.23.1)
and for Case 4,

lim n#¥6,[R(G,6,) — R(G, 6)] < 16B}Bs1Us + 2Bg < oo, (3.23.2)
where
200BA(00) + 22945iTe 4 9A(26,B + By + HaBrily A(g) for Cases 1, 5,
Be=1{ 20,BA(6,) + BG“; 2BarB¥ 1 9A[(200B + By)A(6o) + (200By + 1)0g]  for Cases 2, 3,
200BA(60) + 22922Y¢ | 2 A(26,B + B, + 200 By + 1) A(6) Jor Case 4,

and amin = min{a(z) : 0 <z <6y} > 0 in Cases 1, 5.
Proof. From (2.8),

ba
R(G, 611,) — R(G, 6) = /d Pn(Wn(iI?) S 0)W(x)a($)1[0<w(x)5232ur]d$ (324) .
6o
+ /b Po(Wa(z) > 0)|W (2)[a(2) 25,0 <w(s)<aid
G
ba
+ [ PaWal(2) < OW (@)a(z) [wen>2paunids

6o
+ [ Pu(Wa(@) > 0)IW (2)|a() Tjw(e)<-2520r1d2
G
= I+I1I+1I1+1V.

Part I and Part II are easy to handle, since we have Lemma 3.6. Using (3.15), we have,
as n > Nj,

ba
I S 2B2ur/d I[0<W(E)S232ur]a(x)dx S SBgBGIUGuzr, (325)

11



and
/]
II < 2Bou’ /b " IaByur <wi)<0)a(z)dz < 8BZBeUgu?. (3.26)
G

Part III and Part IV are a little more complicated. We treat Part III first. Using (3.9),
(3.11) and (3.22), we have

b 1
II1 < /GP(—zz:ZJn < =m0 W (z, 7)) [w(x)>28,0 W (z)a(z)dz (3.27)

b 1 L 1
< Pl S Zin < =21 /no=2 I (e)>2Bsur
< [P W}: jn < ~5V/10:W (@) w5281 W (c)a(a)da
be  AE|Z;p W (z)a(x)dz

b fi x| - L fno?W(@)] x o3

IA

< /dichdn (__ /no.—2W($ W(.'E a(:p)
+ cc1Vdn (__V”U_2W(x) W (z)a(z)ds

ba 24 E|Z1n|3
+ ]
. N a2

= V+VI+VIL

a(z)dz

Using (3.6), (3.16) and (3.14), we have

v< :‘“Vd" @(—%ﬁmBgz)W(x)a(x)dx

= @(—%\/M)/Gl W(z)a(z)dz
< @(—f—gzm) /Ob W (z)a(z)dz
_ B2

Smce \/nun, > logn, there exists an integer N3(> N,) such that for n > Nj, <I>(— 2/t <

= and

20,BA(6) _ 260BA(6)
n nu

As for Part VI, using (3.6) and (3.16), and making change of variable y = 53-v/nuLeW (z),

we obtain

VI < /len ,/nua*(a,- YW (2))W (z)a(z)dz (3.29)

V<

(3.28)
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< /cbc UGQ(—Q—;\/nuLGw(x))W(x)dx

c1Vdn
ba 1
—-BG1UG/ <I>(—2—B3\/nuLGW(:E))W(:E)W'(a:)dw

A

cg1Vdn
2 L /raLgW (ce1Vdn)
< —4BG}JB3UG ) [TV & Vydy
G nu Jo
4BG1BgUG 1 R
< T2 o ®(~y)yd
< I o o B(=y)ydy
< 2B B2Ug N l
- L¢ nu

We consider VII in different cases. For Case 1 and Case 5,

2A(290B + Bz)A(ag) 4 % b 290B1 +1

VII < a(z)dz (3.30.1)

nu n Ja. ua*(x)
2A(26,B + B,) A(6y) N 2A(200B; + 1) A(6)
= nu Cmin MU )

For Case 2 and Case 3,
2A(20()B + BZ)A(Q()) + 21_4_ ba 20031 +1

VII — L, et (3302)
2A(260B + Bs)A(6,) N 2A(26, + 1) By6,
- ny nu )
For Case 4,
b B
vir < HA2B+B)AG) | 24 [l Bitl b0 (3303
_ nu n Jd, UMy
B
< ZACSGB + Bo)AWo) | o 4 (99,8, + 1) x A(B) x ——.
nu nu,
Combining (3.28), (3.29) and (3.30), we get that when n > N3,
Be x X for Cases 1, 2, 3, 5,
Hr= { Bg x nulnn for Case 4. (3.31)
Now we deal with V. Similar to III, we get
0o 1 n ___
v < / P(——="" Zjn > —\/n03?W (%, 1)) Iy ()< 25,0 | W (z) |a(z) dz
ba ,/nEZ}n j=1

IA

) 1 n 1
. / P(———2 ZZjn > ——5\/na;2W(:v))I[W(z)<_232ur]|W(w)|a(z)d:1:
bG ‘/nEZ]n

j=1

13
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< /b”"[l—\P(é\/@lwwnmwwla(zmx+ [* AP W ey

VI X 2 ne 2 W (z)| x o3

IN

1—\1;( L oW (@)W (z)|a(z)dz

cG2

+/ [1-¥ ——\/na‘2|W DIV () a(z)dz

024 B\Zf*
+ ol
bg N o,
= VIII+IX + X.

Using (3.6), (3.16) and (3.14), we have

a{z)dzx

VIII < /c:u—@(lﬁmB@)nW(az)la(z)dx

= [1- <I>(QB§2 V/nun, ]/ |W (z)|a(z)dz

< L-0G2vEm) [ W)

< [i- @(f—;:,/——nunn)] X 206BA(6).

By the symmetric property of ¥(z), for n > N3, 1 — ‘I>( 2 /Tun,) < <1 = and

200BA(60) _ Bo

VIIT < <
n nu

(3.33)

Similar to VII, we obtain
X < / - @(——1-,/nua*(x YW (@)W (2)]a(z)ds (3.34)
< /b T UslL - 8- ,/nuLGW(x) NIW (2)|dz

< —BaUs / [1_q>(——— nuLeW (2))]|W () |W'(z)dz
4B B U, 1 V"ULGIW(CGz)I
S A [1 - @(y)]ydy
G nu Jo

4B BUg 1 [
< 2ZG1Bste - — &(y)]yd
< o /0 [1— ®(y)]ydy

2B B2Ugs 1
—_ X —.
- L¢ nu
We consider Part VII in different cases. Obviously, for Case 1 and Case 5,
2A(200B + Bz)A(o()) + % 6o 29031 +1

X <
- nu n Jog ua*(x)

a(z)dz (3.35.1)

14



24(200B + By)A(6o) | 2A(2600B; +1)A(60)
nu Amin MU

?

where ap;, = min{a(z) : 0 < z < 6y}. For Case 2 and Case 3,

2A(20()B + Bz)A(eo) 4 _2_A 6o 20031 +1

X < > e o(z)dzx (3.35.2)
2A4(200B + By) A(6) |, 2A(260B1 +1)6p
< nu nu '
For Case 4,
8
x < 2ARGB+By)A®) 24 / "WeBrit 1 Vin (3.35.3)
nu n Joe UTln
< 2A(200B + B3)A() 4+ 2A(200B; + 1) x A(6,) x L .
nu NUTn

Combining (3.33), (3.34) and (3.35), we get that when n > Nj,

Bg x + for Cases 1, 2, 3, 5,
Iv < { Bg X nulnn for Case 4. (3.36)

From (3.25), (3.26), (3.31) and (3.36), we get, for n > N3,

16B3Bc1Us x u*" +2Bg x = for Cases 1, 2, 3, 5,
R(G,6:)~R(G,4) < { 16B2Bg1Ug x u¥ + 2Bg x m}nn for Case 4, (3.37)

1 __2r
For Cases 1, 2, 3,5, u =n"#+. So u¥ =L =n 2+, and

nu

lim n®A[R(G,8,) — R(G, )] < 16B2Bc1Us + 2Bg < oo.

1 241
For C 4 h _ ——Z,II_F _ = S 2r . _1 ——22’1 ~1 d
or Case 4, we have u = n"7#en ™, N, = €™ . So u™ = - =n"7H¢ ", an
n

lim n?¥1¢,[R(G, 8,) — R(G, )] < 16B3BeUc + 2B < oo.

The proof is completed.

Next, we consider the uniform rate of convergence of R(G,9,) — R(G,9).

Theorem 3.10 Take u, = n~%F. Then we have, as n — oo, for Case 1, Case 2,
Case 3, Case 4, Case &,

e < 4B2U,
lim nz+1 sup [R(G,d,) — R(G, )] < — 2B, < o0. (3.38)

n—o0 G€g2

15



Proof. In this proof, let cg, =0V (bg — £), cgz = (bg + &) A0 For any G € G, like
(3.24), we have

RG3) - RGO = [° " Pu(Wal() < )W (2)a(e) focwcmards  (3.39)
o / o (Wa (@) > 0)|W (2)1a(z) 2800 <w(e)<ade
+ / . (Wa(z) < O)W (2)a() [ (x)>285ur1d

+ / . (Wa(z) > 0)|W (2)|a(z) [w(a)<—25ywr1ds
= T+II+III+1V.
Using (3.19), we have, as n > Ny,

8B5Ua

I < 2By’ / To<w(a)<amria(a)ds < =2 (3.40)
0
and 6 8B2U,
(1]
II< 2Bzu’/b I _2Byur<w(z)<qia(z)dz < —%uzr. (3.41)
G

Similar to (3.27)

ca1Vh
I < /b * °\11(—% no2W ()W (z)a(z)dz
0
ba

+ \Il(—11/no—zW(a:))W(a:)a(:v)dx

ca1Vbo

b 2A E|Z nl?
-I-/bo - 0; a(z)dz
= V+VI+VII.

Consider Part V first. If by < cgq,

v /CGIWO 8~ 5y e ‘/ﬂ—

bo

= <I>(— 233 \/nuL / 1Vb0 W (z)a(z)dz
< <I>(— \/nuL / W(z)a(
< @(—EV TLULa)200BA(90)

16

2LEYW (z)a(x)dx



Since v/nuL, > logn, there exists an integer N3(> N,) such that forn > N3, ®(—
% and
26,B
y < 208 ——A(6)-
Now consider VI.
b
VI < [° 8(- s frua @)W ()W (@)a(e)do (3.43)
ca1Vbo 2B3

IA

ba 1
U, / o @(—E,/nuLaW(x))W(x)dx

ba 1
< -L7'U, o <I>(—E\/nuLaW(x))W(x)W'(z)dx
B2U 1  [35-VnuLaW(cg1Vbo)
< BE T ®(—y)yd
< IL “wal y)ydy
ABU, 1 [
< — ®(—y)yd
S IL “naly B(vvdy
< 2BV, X i
- LL, nu

For VII, using (3.7) and (3.20), we have

VI < 2005 + B A(0) x L SABEACG) 1

L, nu

Combining (3.42), (3.43) and (3.44), we get that when n > N3,

Il < B, % —1—,
nu
where 2B2U, 4A0,B, A(6
Ba = 200BA(90) + 2A(200B + Bz)A(g ) M
LL, L,
Similarly, we have
IV < B, x L
nu
From (3.40), (3.41), (3.44) and (3.45), we get, for n > N3,
16 BZU, 1

R(G,6n) = R(G,6) < ——2-% X u¥ + 2B, X ——
Since u = n~ T, 2 = L= n~#¥, When n > N3,

27 2
75 sup[R(G, 5,) — R(G, 6)] < 28B2Ue
GEGy L

+ 2B,.

17
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This completes the proof.
Remark For Case 1, by = 0. Since (1.10) implies bg > by = 0, we have
= {G : G satisfies (1.10) and (1. 11) mm ]Wl(x)| > L}.
Theorem 3.10 tells us that

lim n¥ sup [R(G,6,) — R(G,8)] <

n—»oo Gegz

2
16122Ua +2B,

which is a result obtained by Karunamuni(1999). But we do not require in Gy that bg
falls in [0, po], where py < 6y is a known constant.

§ 4 Proofs of Lemmas

Proof of Lemma 3.1 From their definitions, ag(z) and ¥¢(z) are monotone func-
tions. Thus ag(r) < 0o and 9a(z) < oo for 2 > 0 by (1.4) and (1.5). Since o$)(0) < B
from (1.11), ag(0) < oo, and 9¢(0) < fy %00—) + 7 A‘(gg)dG’(B) < ag(0) + Pe(l) < oo.
So we have ag(z) < 0o and 9e(z) < oo for all z > 0. Note that

/:oac(S)ds = / I[s>a:]/ I[0>s]dif(00))
o

_ 4c(6)
= 0=

= 9Ye(z) — zag(z).

Then 00
W(z) = (6 — 2)ag(z) — / ag(s)ds. (4.1)

In Cases 1, 2, 4. Using Taylor’s Theorem, (2.1) and (2.2), a straight-forward computation
shows that

E[——qf{f{;)] (4.2)
— /0 / * K;ja(y Z((%)I[o<y<o]dde(9)
= /O / % (0)-7[0<y<0]dde(9)

18



o 1 -z
— Ko(

0

Jac(y)dy
= / Ko(t)ag(z + ut)dt
_ / Ko(t) ag(:l; )t + / Ko(t)utal (z)dt + - - - + / Ko(t)—a<”(z+ut;)dt

< J0

where 0 < ¢t} < 1. Also,

E[——K;((i?;)] (4:3)
= /oo /00 E@%ﬂkyd]@ldc"(e)
= / / ze) Llo<y<adydG(0)
= [T 7 5= )esw)y
= —[K (Y )/ ag(s)ds]| +%/0°°[/yooaa(8)d8]Ko(y_x)dy

/0 Ko(t) [/Hut ac(s)ds)dt
= /00[/oo ag(s ds]dt+/°° Ko(t)ag(t)utdt + - - -

r+1tr+1 )
-I—/ Ko(¢) ol (z + ut)dt

= / a (s)ds +u" X Utrﬂ /oo Ko(t)a$) (z + utl)dt
- = G (T + 1)! 0 0 G 2 b)
where 0 <5 < 1. Let

W(z,n) = @ / CoE, ()0 (z + ut})dt (4.4)

r+1 (r) *
('r+1 / " Ko(t)ag' (z + uts)dt.

By (3.2), (4.1), (4.3) and (4.4), we have
W(z,n) = W(z) +u"W(z,n).
Since o) (z) < Bfor z € [0, fo+1], z+ut; < 6o+1 and z+uty < Gy+1 for x € [dy Abg, Oy

20, BB,
17,74 < 70 _—=1
W (@,m)| < D)t i)

)

= Bz,

19



for = € [d, A bg,0y]. For Cases 3, 5, the similar computation shows that
W(z,n) = W(z) + u"W(z,n),
and |W(z,n)| < B, for = € [d, A by, ).

Proof of Lemma 3.2 By (1.10), 9¢(0) < 6ya6(0) < 6yB. Thus 9¢(z) < 6B for
z € [0,8;]- Then we have

(W (z)| o (z) — Ya(z)
< bGyae(z) + Ye(x)
< Goac(0) + 9c(0)
< 26yB.

I

Proof of Lemma 3.3 Obviously, Z;, are i.i.d. for fixed n. A few computations
show that, for Cases 1, 2, 4,

q
Il

; EZ?,
EV(X;,z,n)]

—z Ko(=2 (2,
/ / < Ka((y) ) Ka((yzs )] A(o))I[0<y<0]dde(9)
)ag(z)dy

Y—x T
/0 uza(y)[(e0 ) Kol u

) — ukK (4=
- /ua($+ut)[(00 ) Ko(t) — uK: () Poc(z + ut)dt

IA

< ——(260B; + B;)%.

ua*(z)

Then (3.6) is proved. And also,

w| = max bo— 2 Kol5%)  Ki(B) | z,n
IZJ‘nl - y>0 | U a(y) a(y) +|W( ’ )l

1
= fax m[(% — 7)Ko(t) — uK;1(t)] + |W(z)| + B,
26,B; +1
ua*(x)

For Cases 3, 5, the proof is similar. We omit it here.

+ 260B + Bs.

Proof of Lemma 3.4 From Lemma 3.1, |W(z,n)| < B; for all z € [d, A by, 0y]. If

u "W (z, n) =u " [W(z)+ v W(z,n)] = u""W(z) + W(z,n) > 2B, — B, =By, >0

20



and

W(z) uTW(x)
W (z,n) u W (z) + uW(z,n)
u "W (z) — 2B2 + 2B,
U_TW(.'D) — 2Bz + Bg
< 2

IN

Then (3.14) is proved. (3.15) can be proved in a similar way.

Proof of Lemma 3.5 From (1.11), we know G'(z) = g(z) exists. Then

W'(z) = %(m — 6y).

Thus we have W'(z) < 0 for z < 6p. By (1.12), we know W'(bg) < 0. Since W'(z) is
continuous by (1.11), we can choose ¢g; and cg, such that cg1 < bg < cga < 6y and for
all z € [CGl, CG2],

—W'(z) > ——=% = BgL.
On the other side, let Bgy = min{W (cg1), |W(cg2)|}- We have

Proof of Lemma 3.6 Since u” — 0 as n — oco. There exists an integer N;(> Np)
such that for all n > Ny,

2Bz’u,r < Bga.
Then |W(z)| < 2Byu" implies z € [ca1, cgz]- So, using change of variable y = 2%2%, we
have
bo CG2
Ijw(w)<2Bywria(z)ds = / Iyw (2)|<2B2urj0(x)dz
(el
CG2
< UGBGI/ I[|W(z)|§232uf][—W'(-T)]dx
[“ed ]
e
< 2UgBg1Bau' W(cz y diyi<dy
2Bou”

< 4B;BgiUgu’.

(3.11) is proved. As for (3.12), we take No(> N;) such that u < €& A @_—22@ and
7, < min{a(z) : 0 < z < 6} for cases 1, 3, 5. For z > d,, by our definition of d,,,
a*(xz) > n, for Cases 2, 4 and a*(z) > min{a(z) : 0 < z < 6} > n, for Cases 1, 3, 5.
For z € [Cg1,Caa), we have &1 < 7 —u <z +u < Cgy + #=8e2 Thus a*(z) > Le.

21



Proof of Lemma 3.7 (3.17) is from the definition of G,. We prove (3.18) here. If
bg — € >0, for x € [0,bg — £], by the mean value theorem

W(be —£) — W(ba) = -W'(z*)¢,

where z* € [bg — &, bg]. Note that W(bg) = 0 and {W'(z)| > L. Thus |W (bg — £)| > LE.
If bg + & < Oy, W(bg + &) — W(bg) = W'(z**), where z** € [bg,bg + £]. Thus
[W (b + €)| > LE. So for z € [0,0V (bg — &)] U [(be + &) A 6o, 60, |W ()| > LE.

Proof of Lemma 3.8 . o
Since 4" — 0 as n — oo. There exists an integer N; such that for all n > Ny,

2Bzu" < Lf

Then |W (z)| < 2Byu” implies z € [0V (bg — &), (bg+&) Abp). So, using change of variable
Y= W)  we have

2Bau™)?
o (b +£)Abo
Ijw (2)|<2Bwri0(z)dT = /OV(bG_E) (W (2)|<2Bsurja(z)dT
-1 (ba+£)nbo ,
< Ul /OV(bG_E) Inw (z)l<2Byur) [ =W (2)]dz
2, Bou" [ Gas D
< I W (b +£)Adg) I[Iylilldy
2Bgu”
4B,U,
< —Z u.

We prove (3.20) for different cases. For Case 1, by = 0, a*(z) > L,. For Cases 2, 3, 4, 5,
we can find No(> Ny) such that u < 2 A 1. Forz € [by, 6o}, & <z—u < z+u < +1.
Thus a*(z) > L,.
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