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Abstract

We address the classic problem of interval estimation of a binomial proportion. The
Wald interval p=t24 5 n~/2(p(1—p))'/? is currently in near universal use. We first show
that the coverage properties of the Wald interval are persistently poor and defy virtually
all conventional wisdom. We then proceed to a theoretical comparison of the standard
interval and four additional alternative intervals by asymptotic expansions of their
coverage probabilities and expected lengths. Fortunately, the asymptotic expansions
are remarkably accurate at rather modest sample sizes, such as n = 40, or sometimes
even n = 20.

The expansions show that an interval suggested in Agresti and Coull (1998) domi-
nates the score interval (Wilson (1927)), the Jeffreys prior Bayesian interval, and also
the standard interval in coverage probability. However, the asymptotic expansions for
expected lengths show that the Agresti-Coull interval is always the longest of these,
and the Jeffreys prior interval is always the shortest among these. The standard inter-
val and the Wilson interval, curiously, have identical second order expansions for their
average expected length and are in between the Jeffreys and the Agresti-Coull interval
in the ranking for length.

These analytical calculations support and complement the findings and the recom-
mendations in Brown, Cai and DasGupta (1999).
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1 Introduction

In this article, we consider a very basic but very important problem of statistical practice,
namely, interval estimation of the probability of success in a binomial distribution. There is a
interval in virtually universal use. Of course, this is the Wald interval p+x n=2/2(p(1—p))*/?,
where p = X/n is the sample proportion of successes, and  is the 100(1 — «/2)th percentile
of the standard normal distribution.

Certainly the problem has a lot of literature, and the questionable performance of the
standard Wald interval has been sporadically remarked on. Simultaneously, there has also
been work on suggesting alternative confidence intervals. For example, alternative intervals
have been suggested that use a continuity correction, or intervals that actually guarantee a
minimum 1 — « coverage probability for all values of the parameter p. In spite of all that
literature, there is still a widespread misconception that the problems of the Wald interval
are serious only when p is near 0 or 1, or when the sample size n is not that large. The
influential texts in statistics provide the perfect testimonial to this misconception. Nearly
universally, they recommend the Wald interval when npq is larger than 5 or 10. Inspired
by two interesting articles, Santner (1998) and Agresti and Coull(1998), Brown, Cai and
DasGupta (1999) recently showed that the performance of this standard interval is far more
erratic and miserable than is appreciated. Virtually all of the conventional wisdom and
popular prescriptions are false and misplaced. The Wald interval is so poor in this problem
that it cannot be trusted.

Brown, Cai and DasGupta (1999) do a fairly comprehensive examination of eight natural
alternative confidence intervals for p, and after extensive numerical analysis recommend the
score interval of Wilson (Wilson (1927)) or the Jeffreys prior interval for small n, and an
interval suggested in Agresti and Coull (1998) for larger n. The principal goal of this article is
to present a set of theoretical calculations that reinforce those findings and recommendations
with accuracy and consistency. We show that the coverage probability of the standard
interval not only exhibits oscillation, but also has a pronounced systematic bias. We also
show that the alternative intervals do better in these regards. These theoretical calculations
hopefully enable us to get some closure on this obviously important problem. Previously,
there had been a nagging suspicion that the Wald interval can be erratically poor, and
there had been useful but isolated attempts at finding credible alternatives. Brown, Cai and
DasGupta (1999) addressed the issue of credible alternatives in a more comprehensive way
and made certain recommendations. By fully reinforcing those practical recommendations
through analytical calculations, the present article gives credibility to the findings in that
article.

In section 2, we give a few examples to illustrate the extent to which conventional wisdom
fails in this problem. Additional examples may be seen in Brown, Cai and DasGupta (1999).
In Section 3, first we introduce four alternative confidence intervals; we selected these four
for a theoretical study based on our findings in the companion article. The rest of Section
3 deals with Edgeworth expansions for the coverage probabilities of the standard interval
and the four alternative intervals. Due to the lattice nature of the Binomial distribution,
the Edgeworth expansions here contain certain oscillation terms that typically do not arise
for continuous populations. So at the very least, the Edgeworth expansions explain why
the Wald interval exhibits such eccentric behavior. We then show that although one term



Edgeworth expansions do not approximate the coverage probabilities with adequate accuracy,
the two term expansion provides truly good accuracy at modest sample sizes. The derivations
of the two term Edgeworth expansions are somewhat technical, and especially so for the
Bayesian intervals. They are derived separately in an appendix.

In Section 4, we use the two term Edgeworth expansions as an analytical tool to com-
pare and rank the various intervals with regard to their coverage probabilities. The two
term expansions show that the interval suggested in Agresti and Coull(1998) dominates the
standard, the Wilson, and the Jeffreys prior interval in coverage probability. They also show
that the Wilson and the Jeffreys prior interval are pretty consistently comparable. But the
Jeffreys interval comes the closest to having second order accuracy. The two term expansions
even show, on careful closer scrutiny, other subtle and interesting features of this problem.
For instance, from these Edgeworth expansions one can see that even the choice of the level o
can significantly affect the performance of the standard interval and the alternative intervals
in this problem.

As in any interval estimation problem, coverage is only part of the assessment of a
confidence interval. Parsimony, naturally measured by expected length, is another important
criterion. In Section 5, we derive two term expansions for the expected lengths of the
standard and the alternative confidence intervals. Fortunately, the coefficients in the second
term are different for different intervals, giving us a basis for comparison of their expected
lengths. We then also provide an integrated version of the expansions, the integration being
over p on (0, 1). The results are quite interesting; from these expansions one sees that the
Agresti-Coull interval is always the longest, and the Wilson and the standard interval have
identical two term expansions, and the Jeffreys prior interval is always the shortest. The
fact that these rankings are always the same makes the results more valuable as a guide to
choosing a credible alternative confidence interval.

As we mentioned before, it is especially gratifying to see that these asymptotic expansions
of both the coverage probabilities and the expected lengths reflect the reports in Brown,
Cai and DasGupta (1999) with rather remarkable accuracy. Because of these theoretical
calculations, we feel assured and comfortable in recommending strongly that the standard
interval for this problem should not be used and the suggested alternatives in Brown, Cai
and DasGupta (1999) are far better and safer to use.

2 Coverage Properties of the Standard Interval

Although the standard interval is in near universal use the following instructive examples
will show that its coverage probabilities are unacceptably erratic and poor. These illustrative
examples are given to show that there really is a serious problem here and it deserves to
be fully understood by statisticians at large. Specifically, the poor coverage probability is
not just for p near the boundaries, and the erratic behavior persists for large and even very
large sample sizes. There is therefore a real need for a thorough investigation of alternative
confidence intervals in this important problem. Additional examples may be seen in Brown,
Cai and DasGupta (1999), Santner (1998), and Agresti and Coull (1998).

Example 1 Consider p = .5. Conventional wisdom might suggest that all will be well if n is
above 20. Figure 1 plots the coverage probability of the nominal 95% standard interval with
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p=.5 and n = 10 to 100. At n = 97, the coverage is still only about .933; in addition, the
coverage probability does not at all get steadily closer to the nominal confidence level as n
increases. At n = 17, the coverage probability is .951, but at the much larger value n = 40,
the coverage is only .919. The oscillations in this case are caused solely by the discreteness
of the distribution. A careful look at the coverage probability shows that it requires n > 194
to guarantee that the coverage probability stays at .94 or above.
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Figure 1: Coverage probability of the standard interval for p = .5 and n = 10 to 100.

D 01).025( 05| 1| .15 2| .26 3| 35| 4] 45| 5
Mg 7963 | 3048 | 1387 | 646 | 399 | 292 | 273 | 245 | 228 | 185 | 195 | 194
ng 2906 | 1543 | 604 | 287 | 182 | 147 | 168 | 112 | 92 | 97| 52| 151
nw || 2605 | 681 | 491 | 231|271 |131 112|101 | 55| 77| 50| 105
nac 1 5 10 11| 58| 89| 99| 78| 34| 60| 50| 94

Table 1: Smallest n after which the coverage stays at .94 or above.

Table 1 lists the smallest n after which the coverage stays at .94 or above for selected
values of p for the standard interval and three alternative intervals. n,, ny, nw and nsc
denote the smallest n required for the standard interval, the equal-tailed Jeffreys prior in-
terval, the Wilson interval, and the Agresti-Coull interval, respectively. See Section 3.2 for
the definition of these alternative intervals. When p is small, it takes many thousands of
observations for the nominal 95% standard interval to ensure that the coverage probability is
at least .94. In certain practical applications, it is common to have a small p. For example,
the defective proportions in industrial quality control problems are often very small. Table
1 shows that even if p is not small, the required sample sizes for the approximate validity of
the standard interval are much larger than the usual recommendations in popular textbooks.
In comparison, the alternative intervals do much better. From Table 1, one may think that
the Agresti-Coull interval is the obvious interval of choice. We will see in Section 5 that it
tends to be longer than the other intervals and so has a higher coverage probability.



Example 2 This example shows that the standard interval is not just eccentric, but can also
be grossly inadequate. There is a systematic bias in the coverage probability of the standard
interval. Figure 2 shows the coverage probability of the nominal 99% standard interval with
n = 30. It is striking that in this case the coverage not only oscillates erratically, but is
always smaller than .99. In fact on the average the coverage is only .914. Our evaluations
show that for all n up to 45, the coverage of the 99% standard interval is always below the
nominal level for all 0 < p < 1, although certain values of p are of course luckier than others.
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Figure 2: Coverage of the nominal 99% standard interval for n = 30 and 0 < p < 1.

2.1 The Reason for the Bias

Example 2 indicated that there is a systematic negative bias in the coverage probability of
the standard interval. The bias is due mainly to the fact that the standard interval has the
“wrong” center. The standard interval is centered at p = X/n. Although p is the MLE
and an unbiased estimate of p, as the center of a confidence interval, it causes a systematic
negative bias in the coverage. As we will see in Section 3.5, by simply recentering the interval
at p = (X +«?/2)/(n+ k?), one can increase the coverage significantly for p away from 0 or
1 and eliminate the systematic bias.
The standard interval is based on the fact that

n'/2(p — p)
VDq

However, even for quite large values of n, the actual distribution of W, is significantly
nonnormal. Thus the very premise on which the standard interval is based is seriously
flawed for moderate and even quite large values of n. For instance, asymptotically, W,, has
bias 0, variance 1, skewness 0, and kurtosis 3. For moderate n, however, the deviations of
the bias, variance, skewness and kurtosis of W, from their respective asymptotic values are
often significant and cause a non-negligible negative bias in the coverage probability of the
standard confidence interval. Figure 3 plots the very noticeable bias in the distribution of
W, (conditional on p # 0 or 1) for n = 20 to 200 and fixed p = .25.

W, = £, N(0, 1).
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Figure 3: Bias in the distribution of W, with p = .25. Vertical axis is E(W,).

We can analytically demonstrate the bias in the distribution of W, by standard expan-
sions. Denote Z, = n*/?(p — p)/,/pg. Then simple algebra yields

7,
L+ (U= 20) 20/ pa — 22/n

A standard Taylor expansion and formulas for central moments of the binomial distribution
then yield an approximation to the bias:

—-1/2 7T 9(p—1/2)?
P12, T 9p-1/2)
N 2n 2npq

It can be seen from (1) that W, has negative bias for p < .5 and positive bias for p > .5.
Therefore, ignoring the oscillation effect, one can expect to increase the coverage probability
by shifting the center of the standard interval towards 1/2. This observation is confirmed in
Section 3.5.

Besides the bias, the variance, skewness and kurtosis of W, often deviate significantly
from their respective asymptotic values. See Table 2 below; especially note the high kurtosis
values.

W, = XNZ,)

EW, = EX(Z,) = ) + o(n~%/2). (1)

n 20 30 40 90 60 70 80 90 | 100 | 150 | 200
Variance || 1.36 | 1.28 | 1.19| 1.14| 1.11| 1.09 | 1.08 | 1.07| 1.06 | 1.04 { 1.03
Skewness || -0.78 | -0.80 | -0.61 | -0.48 | -0.40 | -0.35 | -0.32 | -0.29 | -0.27 | -0.21 | -0.18
Kurtosis 441 | 528 | 466 | 4.03| 3.70 | 3.53 | 3.43| 3.36 | 3.31| 3.19| 3.13

Table 2: Variance, skewness and kurtosis of W,, for p = .25.

2.2 The Reason for the Oscillation

It is evident from Examples 1 and 2 that the actual coverage probability of the standard
interval for p can differ significantly from the nominal confidence level at realistic and even
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larger than realistic sample sizes. The error, of course, comes from two sources: discreteness
and skewness in the underlying distribution. For a two-sided interval, the rounding error
due to discreteness is asymptotically dominant. It is of the order n~1/2. And the error due
to skewness is secondary and is of the order n~!, but still important for even moderately
large n. Note that the situation is different for one-sided intervals. There, the error caused
by skewness can be larger than the rounding error. See Hall (1982) for a detailed discussion
on one-sided confidence intervals.

The oscillation in the coverage probability is caused by the discreteness of the binomial
distribution, more precisely the lattice structure of the binomial distribution. The cumulative
distribution function contains jumps at integer points and the Edgeworth expansions for the
distribution function contain terms that do not appear, typically, in the continuous case (for
example, under the Cramer conditions; see Esseen(1945)).

Let us try to understand at a more intuitive level why the coverage probability oscillates
so significantly. By a straightforward calculation, one can show that the coverage probability
Pop(p € Cl,) equals P, p(lnp < X < upp), where £, , is the smallest integer larger than or

equal to
n(k? + 2np) — kn+/K2 + dnpq
2(k% + n)
and u,; is the largest integer smaller than or equal to

n(k? + 2np) + kn+/K2 + dnpq

2(k%2+n)

)

What happens is that a small change in n or p can cause £,, and/or u, , to leap to the next
integer value. For example, take the case p = .5 and o = .05. When n = 39, £,, = 14 and
Unp = 25; but when n = 40, £, , leaps to 15 while u, , remains 25. Thus the set of favorable
values of X loses the point X = 14 even though n has increased from 39 to 40. This causes
n = 40 to be an unlucky choice of n. This also happens when 7 is kept fixed and p changes
slightly, and we then begin to see unlucky values of p.

3 Alternative Intervals and Edgeworth Expansions

The preceding discussion demonstrates that the coverage of the standard confidence interval
is undesirably unpredictable and poor. Brown, Cai and DasGupta (1999) provides much
additional evidence. Due to the obvious methodological importance of the problem, then,
we face the undeniable need for alternative intervals. Such alternative intervals would have
to be demonstrably better. In addition, it would be desirable to be able to recommend one
or two specific alternative intervals for practical use. The theoretical calculations in the rest
of this paper address these two important goals.

Three things are of importance here. First, there will have to be an evaluation of the
coverage probability of any suggested alternative interval. Second, the intervals have to
be assessed for parsimony in terms of their length. And, third, we have to keep in mind
the formal simplicity of any recommended alternative interval. Simplicity may well be a
dominant factor here because the problem is a basic one and a computationally clumsy
procedure is not likely to survive the test of time in such a basic problem.
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The theoretical calculations will get rather technical. So it may be helpful to have a
preview of what the calculations are, how the calculations are useful, what are the main
conclusions from these calculations, and how we process the conclusions to make practical
recommendations. For clarity and coherence, we next provide such a preview. A satisfying
and salient feature of the theoretical calculations is that all the numerical evidence and
conclusions presented in the companion paper Brown, Cai and DasGupta(1999) manifest
themselves in these calculations.

3.1 Preview

In Brown, Cai and DasGupta (1999), a number of alternative confidence intervals for a
binomial proportion are presented. First, we will present a subset of those intervals with a
brief motivation. The coverage properties of these intervals will then be studied by deriving
the corresponding Edgeworth expansions of their coverage probabilities. We will see that one
term expansions, although simple, are not adequately accurate to address the problem on a
serious basis. Therefore we will be compelled to proceed to two term expansions. The two
term expansions, rather surprisingly, will be remarkably accurate even for modest sample
sizes. Furthermore, comparative examination of the two term Edgeworth expansions will
provide a lot of useful information about the alternative intervals. For example, we can see
from the two term expansions why the standard interval is so bad and how the alternates
compare among themselves. We will also see in the two term expansions some subtle features
of the problem itself, e.g., how the choice of a can affect the performance of the confidence
intervals.

Next, parsimony of the alternative intervals will be studied by an appropriate expansion
of their expected lengths. These are also two term expansions. Moreover, just like the
Edgeworth expansions of the coverage probabilities, the expansions for expected length are
remarkably accurate at moderate sample sizes, and are directly useful to rank the intervals
in terms of parsimony. Together, the Edgeworth expansions for the coverage probabilities
and the two term expansions for the expected lengths give us the tools to make an overall
comparative assessment of the suggested alternative intervals.

One final point is to be mentioned here. Among the alternative intervals considered
are the Bayesian intervals resulting from Beta priors. Ample evidence will be presented
that, particularly, the Jeffreys prior interval has excellent coverage and length properties.
However, the actual derivation of the Edgeworth expansion is significantly more complex
for the Bayesian intervals than for the other alternative intervals. We have presented all of
these derivations in an appendix.

We will now present our alternative intervals.

3.2 Alternative Intervals

Specifically, besides the standard interval, we will consider the following intervals.

1. The recentered interval: The performance of the standard Wald interval can be much
improved by simply moving the center of the interval towards 1/2 to

= (X +£%/2)/(n+ ).
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When o = .05, if we use the value 2 instead of 1.96 for «, then p = (X + 2)/(n + 4);
this is the Wilson estimator of p. See Wilson (1927) and Agresti and Coull (1998).
The recentered interval has the form
2
2
X +r%/ L.

CIrs — AN1/2 0 —1/2
i Tedd)

2. The Wilson interval: This interval is formed by inverting the CLT approximation to
the family of equal-tailed tests of Hy : p = py. Hence, one accepts Hy based on the
CLT approximation if and only if py is in this interval. The Wilson interval has the
form

X +r*2 | knl/?

2
A K172
n + K2 n—l—nz(pq—'__)/' @)

CI
w 4n

3. The Agresti-Coull interval: This interval has the same simple form as the standard
interval CI,, but with a different p and a modified value for n. Denote X = X + K%/2
and i = n + k2. Let p = X/ and § = 1 — p. The interval is defined as

Clic = p + r(pg)"/*n /2. (3)

Again, for the case when a = .05, if we use the value 2 instead of 1.96 for &, this
interval is the “add 2 successes and 2 failures” interval in Agresti and Coull (1998).
For this reason, we will call it the Agresti-Coull interval.

4. The equal-tailed Jeffreys interval: Historically, Bayes procedures under noninformative
priors have a track record of good frequentist properties. See, for example, Wasserman
(1991). In this problem the Jeffreys prior is Beta(1/2,1/2); see Berger (1985). The
100(1 — )% equal-tailed Jeffreys prior interval is given by

Cl; = [Baj2,x+1/2, n-x+1/2 Bi—a/2,x+1/2, n—x+1/2); (4)

where B(a;m, my) denotes the o quantile of a Beta(m;, ms) distribution.

3.3 One Term Edgeworth Expansion

Edgeworth expansions are a popular tool for studying complicated probabilistic quantities.
See Bhattacharya and Rao(1976), Barndorfl-Nielsen and Cox (1989) and Hall (1992) for
more details on Edgeworth expansions.

Denote by CI a generic confidence interval for p. The coverage probability of CI is
defined as .

Clp, )= P(peCl)=}_ I(p,z) ( Z )pz(l -p)"77,
=0

where I(p, z) is the indicator function that equals to 1 if the interval contains p when X = z
and equals 0 if it does not contain p.

Define

h(z) =z —xz_ (5)



where z_ is the largest integer less than or equal to . So h(z) is just the fractional part of
z. The function h is a periodic function of period 1. Let

9(p, 2) = g(p, 2,m) = h(np + 2(npg)*’?) (6)

(we suppress in (6) and later the dependence of g on n). Theorem 23.1 in Bhattacharya and
Rao(1976) yields that

n'/2(p — p)
(pg)V/?

where (1/2 — g(p, z)) takes values in [—1/2,1/2] and represents the rounding error, and
(1/6)(1 — 2p)(1 — 2?) represents the skewness error. For the two-sided confidence intervals
under consideration, the rounding error is dominant and the skewness error is reduced to
O(n™'), as we shall see in (8) below.

From (7) we have a one-term Edgeworth approximation of the coverage probability of
the confidence interval CI;. Let ¢; and u; be defined as functions of p (and n and &) by

n'/2(p — p)
(pq)'/?

See (38) in the Appendix for the exact expressions for £, and u,. Correspondingly, the
bounds Z4¢, uac, £, and uy in Section 3.5 are defined similarly.
Suppose np + £,(npq)/? is not an integer; then the coverage probability of C'I, satisfies

Py(peClL) = (1—a)+Ig(p, &) — gp, us)]$(k)(npg)™* +O(n") (8)

The second term in (8), due to rounding error, is the principal contributor to the oscillation
phenomenon. The oscillation term is of the order of n=/2. Since |g(p, £,)—g(p, u,)| < 1, this
term is bounded by ¢(k)(npg)~'/2. Although the O(n~'/2) oscillation term can be calculated
precisely when p is known, it is clear from the expressions of g, £, and u,, the oscillation
term is unpredictable when p is unknown. This O(n~'/2) term can be significant even for
large n, especially when p is close to 0 or 1.

P( < 2) = 8(2) +1(5~ 9(p, D)+ (1~ 2)(1 = 2)6(2) (npg) >+ O(n™) (7)

{peCL}={4< < u,}.

Remark: In the case that np+£,(npq)'/? is an integer, then one needs to add an additional
term B,(X = np + £5(npq)*/?) = ¢(k)(npq)~/? + O(n~') to (8) and gets

Py(p € CL) = (1—a)+g(p, &) — g(p, us) + L(x)(npg) /> + O(n7?). (9)

The same applies to the two-term expansion of the coverage probability of various confidence
intervals discussed in Section 3.5.

Here we would like to point out that there is an error in Ghosh(1979) (Theorem 1, pp.
895). The oscillation terms were mistakenly omitted in the expansion. This affects one
statement (Ghosh(1979), pp. 895) made in the paper. Because of this O(n~'/2) oscillation
term, for any p and a, it is in fact not true that for sufficiently large n, C(p,n) will always
exceed 1 — o up to the order n™'/2. So when p is unknown, there is no guarantee that the
coverage probability of the standard interval is larger than the nominal level up to the order
n~'/2 no matter how large n is.
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3.4 One Term Expansion Is Not Accurate Enough

The one-term Edgeworth expansion offers an approximation of the coverage probability and
is useful for finding the source of the oscillation. The approximation error of a one-term
Edgeworth expansion is O(n~!). In Figure 4, we plot the actual coverage probability of
the standard interval and the one-term Edgeworth approximation for fixed n = 100 and
variable p from .05 to .95. And in Table 3, we compare numerically the coverage probability
of the standard interval with the one-term Edgeworth approximation for fixed p = .2 and
some selected values of n from 20 to 200. It is clear that the one-term Edgeworth expansion
captures most of the oscillation effect in the true coverage probability. However, it contains
a systematic bias. The reason is that the next term in the Edgeworth expansion , which is
of the order n~!, is mostly non-oscillating and negative. This can be easily seen from (13)
in the next section.
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Figure 4: Comparison between the actual coverage probability (solid) and one-term Edgeworth
expansion (dotted) with n =100 and 1 — @ = .95.

n 20 30 40 50 60 70 80 90 100 | 150 | 200
C(p,n) 921 946 | 905 | 938 | .922 | .940 | .932 | 947 | .933 | .944 | .941
e1(p, n) 960 | 968 | 934 | 952 | .951 | .951 | 952 954 | .942 | .949 | .949
difference | .039 | .021 | .029 | .015| .028 | .010 | .020 { .007 | .009 | .005 | .008

Table 3: A numerical comparison of coverage probability C(p,n) and one-term Edgeworth approx-
imation e; (p,n) for p = .2. The last row is the difference e;(p,n) — C(p,n).

Because the O(n™!) is non-negligible for moderate n, it is usually necessary to look at
the two-term Edgeworth expansion. In fact, as we shall see later, several other confidence
intervals which have much better performance than the standard interval have almost iden-
tical one-term Edgeworth expansions as the standard interval. In these cases, the second
order term makes the difference. An expansion of the coverage probability up to the n /2
term is just not adequately accurate. So let us consider the two term expansion.
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3.5 General Two Term Edgeworth Expansion

For a unified derivation of the two term Edgeworth expansion for CI, and C1I,,, it is conve-
nient to define a general confidence interval CI,(3, ) as follows:

CI*(IB’ 7) =

X+ﬁinn‘1/2<X+7-n—X+7)l/2 (10)

n+ 20 n n

The standard interval and the recentered interval are just special cases of CI.(8, v) with
CI, = CI.(0,0) and CI,, = CI,(k%/2,0).

The two term Edgeworth expansions are also given separately for the intervals C Iy and
Clac. The following general notation will be repeatedly used for the ensuing Edgeworth
expansions.

Notation: Denote, with g(p, -) as in (6),

b= (5= 20)( ~p)pa)

ty = (i—l)n3+(4—i)nﬂ+ﬁ

8pq 2pq 2pq
1 1 7 11,, 1 1
w(k) = (9 36pq)”‘ +(36pq 18)% +(6 610(])'~i (11)

Qa(¢, u) = 1-g(p, £)—g9(p, u)
Qaa(l, u) = %[*gz(p, ) — g*(p, w) + 9(p, £) + g(p, u) — 31-]

Theorem 1 Let 0 <p <1 and 0 < a < 1. Suppose np + £.(npq)*/? is not an integer. Then
the coverage probability of the general confidence interval CI.(8,v) defined in (10) satisfies

P. = PB(peCL(B,7)=01-0a)+[gp &) — g, w)|(k) - (npg)~V/?

+ {2ty — w17 — (1 — 2p)(k — g)tl(pq)‘” 2+ w(k) ()~
+{[(1 - 21’)(%2 - ‘;‘) — (p0)"*t1] - Qa1 (£s, Us) + Qa(~k, K)}xd(K) - (npg)~*

+ 0(n%?) (12)
where the quantities £, and u, are described immediately above (8) and formally defined in
(36) in the appendiz.

In particular, by setting B = v = 0, we have the two term expansion for the standard
interval:

P, = PBpeCL)=(1-a)+g(p, &) — g(p, us)l$(x) - (npg)~?

H - 2 s Lo b)) gen
== 2)(5 4 ) Qnlles w0+ Qulr, W)}x(w) - (pa)”
+0(n™*?) (13)
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And by setting 8 = k2/2 and v = 0, we have the two term ezpansion for the recentered
interval:

Py, = B(peCL,)=(1—0a)+[9(p, &) — g(p, urs)](x) - (npg)~"/?
{2~ )k + w(s)}h(r)n!

4pq
{1 =2)(5 = 3+ Qullrs, 1) + Qual—r, W)}rd(r) - (npe) ™
+0(n™*?) (14)

Remark: In (12), the first O(n™') term is nonoscillating and would cause systematic bias if
it is omitted. The second O(n™!) term represents oscillations from two sources: Qs taking
values between -1/6 and 1/12, contains oscillation caused purely by rounding error; Qs
oscillates between -1 and 1 and the term with (),; represents mixed effect of the discreteness
and skewness in the underlying distribution. Note that (s is continuous and the term with
(021 vanishes when the binomial distribution is symmetric, i.e., if p = 1/2.

The two-term Edgeworth expansion for the coverage probability of the confidence interval
CIy is slightly simpler.

Theorem 2 Let0<p<1and 0 < a < 1. Suppose np — /<c(npq)1/2 s not an integer. Then
the coverage probability of the confidence interval Cly defined in (2) satisfies

Pw = By(peCly)=(1—-a)+[g(p, —r) — g(p, K)I¢(k) - (npg) /> + w(s)$(r)n™"
k2 1

+{(1- QP)(F - 5) - Qa1(—k, K) + Qua(—k, K)}kd(k) - (npg)™

+ O(n=3/?) (15)

Similarly, the two-term Edgeworth expansion can be derived for the coverage probability
of the confidence interval CI ¢.

Theorem 3 Let 0 < p <1 and 0 < o < 1. Suppose np — EAc(npq)l/2 18 not an integer.
Then the coverage probability of the confidence interval Clac defined in (3) satisfies

Pic = PBy(p€Clac) = (1-a)+[9(p, Lac) — 9(p, uac)|d(x) - (npg) ™
+ [(4;.3 — 1 +w(k)]é(k) - n7

{0 = 29)(5 = 3)* Qnllac, ac) + Qunl—r, ) bd(s) (0p0) ™

+ O(n~%/?) (16)
where the quantities Lac and uac are defined in (39) in the appendiz.

The derivation of these expansions is fairly technical and will be given in the appendix.
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3.6 Two term Expansion for Beta Prior Intervals

A two-term expansion can be derived also for the Bayesian intervals. The derivation in this
case, however, is more complex. Unlike the other alternative intervals in Section 3.5, the
limits of Bayesian intervals are not in closed form. So the expansion problem is really two
stage: first, an adequate expansion of the limits of the intervals themselves, and then an
expansion of the coverage probability.

We state here the two term expansion for the coverage probability of the Jeffreys prior
interval. The expansion for general beta prior intervals is given in the appendix.

Theorem 4 Consider any fired 0 < p < 1 and 0 < a < 1. Suppose np + £;(npq)*/? is
not an integer; then the coverage probability of the Jeffreys prior interval CI; defined in (4)
satisfies

1

P; = PpeCl;)=Q1-a)+I[glp, £) — g9(p, us)le(x) - (npg) "/ + %(1 - %)W(H)n_l
+[(—2p3_—1) - Qa1(Ly, ws) + Qua(—5, K)lk(k) - (npg) ™" + O(n™3/?) (17)

where £; and uy are defined as in (45) witha =b=1/2.

Again, the proof is given in the appendix.

4 Using the Two Term Expansions

Edgeworth expansions are commonly considered as asymptotic approximations. In our prob-
lem, the two term expansion is remarkably accurate even for relatively small n. We will use
the two term expansions for the coverage probabilities to compare the performance of the
confidence intervals. Let us see some evidence of the accuracy of the two term Edgeworth
expansion.

4.1 Accuracy of the Two Term Expansions

The two-term Edgeworth expansions approximate the true coverage probability of a binomial
confidence interval with an error of O(n3/2). The approximation is very accurate, even for
small to moderate sample sizes.

Figure 5 shows the actual coverage probability of the nominal 95% Wilson interval and
the two-term Edgeworth approximation for n = 20. The maximum error is only .0008 in the
range of .2 < p < .8. The maximum error further is reduced to .0002 in the same range of p
when n increases to 40. The differences are almost indistinguishable on the plot.

Similarly, the two-term Edgeworth approximation is accurate for other intervals. For the
standard interval, the maximum error is .0075 for n = 40 in the range of .2 < p < .8. The
maximum error decreases to .0022 in the same range of p when n increases to 100. The
maximum error is .0031 between the true coverage of Clac and its two-term Edgeworth
approximation for n = 40 and .2 < p < .8 and the error is reduced to .0006 for n = 100 in
the same range of p. Larger values of n are necessary for very good accuracy if p gets closer
to 0 or 1.

14
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Figure 5: Comparison between the true coverage probability of the Wilson interval (solid) and
two-term Edgeworth expansion (dotted) with n =20 and 1 — a = .95.

4.2 Comparison of Coverage Properties

We will now use the two term Edgeworth expansions presented in Sections 3.5 and 3.6 to
compare the coverage properties of the standard interval CI;, the Wilson interval Clyy,
the Agresti-Coull interval Cl ¢ and the Jeffreys prior interval CI;. We will show how the
non-oscillatory part of the second order term can be used to explain the deficiency of the
standard procedure and the much better performance of competing ones such as Wilson’s
procedure. Indeed, directly from equations (13), (15), (16), and (17) we have :

(1- 2p)2’€5 ny 1

Py —P, = — —1)&® .n7t —3/2 illati 1
ac — Py { T2pg o )& }o(k) - n~t + O(n™?) + oscillations  (18)
1
Pic — Py = (ZPE — 1)&3p(k) - n7t 4+ O(n~%2) + oscillations (19)
1-2p2 . .4 20, ,1 11 s
Py—P; = {—>_2P/ == — :
o= Py = A= (o = TR 4 (g — 2 )eie)
+ O(n%/2) + oscillations (20)

where Ps, Pw, Pac, and Py are the coverage probabilities of CI;, CIw, Clc, and CIy,
respectively. The most important things to notice in (18), (19) and (20) are the following.

In (18) and (19), trivially, the coefficient of the n~! term is positive for all p and all «.
In (20), the same coefficient is positive for all p as long as & < 3.95.

The conclusion is that of the three alternative intervals Cly,, Clasc, and CI;, Clac
“dominates” the other two intervals as far as coverage is concerned. And, of course, Cl ¢
“dominates” the standard interval CI; as well. However, coverage is only a part of the
story in interval estimation. In Section 5, we will present the corresponding expansions
for expected lengths of these intervals and we will then appreciate better the reason for this
apparent dominance property of C'I4¢ in coverage. It turns out that Cl4¢ tends to be longer
than these competitors, and therefore not very surprisingly has larger coverage probabilities.

Expressions for P; — Py, P; — Py, etc. can be obtained from (18), (19) and (20) in
an obvious way. Rather than explicitly reporting those expressions, we give a simple plot
that might help understand the comparisons a little better. In Figure 6 below, the values
of the nonoscillating n™! terms are plotted as a function of p when n = 40, a modest
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value, and @ = .05. The curves correspond to Pac, Pw, Ps, and P;. A serious negative
bias in the coverage of the standard interval is transparent from this plot. The Wilson
interval CIy does significantly better than the standard interval C1T;, and especially so near
the boundaries. However, CIy and the Jeffrey interval CI; are pretty comparable and,
especially for CI;, the systematic bias term is very close to zero. So if we consider only the
nonoscillating terms, then the Jeffreys interval comes the closest to second order accuracy.
On the other hand, the Agresti-Coull interval CIsc has higher coverage probability than
Clw (and likewise the others), and again, the difference is the most noticeable near the
boundaries. These conclusions obtained from the two term Edgeworth expansions are very
much consistent with numerical reports on the exact coverage probabilities in Brown, Cai
and DasGupta (1999). The analytical calculations in this article thus provide a concrete
theoretical justification for the practical results in that article.

i

i

0

Figure 6: Comparison of the nonoscillating terms. From top to bottom: the nonoscillating O(n~1)
terms of P4c, Pw, Py, and Ps, with n = 40 and a = .05.

The individual performance of the intervals themselves also depend somewhat on the
value of a. For instance, consider equation (15) representing the two term Edgeworth ex-
pansion for the Wilson interval and consider the nonoscillating n~! term there. This is the
systematic bias term. The coefficient is w(k)@(x), where w(k) defined in (11) actually also
involves p. Now simple algebra shows that while for x = 1.96, w(k)@(k) is always positive,
for k = 2.575, i.e., when o = .01, w(k)¢@(k) is negative for p < .1 or p > .9. This indicates
that the performance of the Wilson interval when p is close to the boundaries is better for
the 95% case than for the 99% case. This is also confirmed by exact coverage calculations.

Similar interesting phenomena are seen even for the standard interval. Consider equa-
tion (13) giving the two term expansion for the standard interval. The coefficient of the
nonoscillating n~! term is significantly negative whenever p is not near .5 for both x = 1.96,
and 2.575. This corresponds to the previously seen poor coverage of the standard interval.

More interestingly, for kK = 1.96, the coefficient of that n~! term is uniformly more
negative for all p, indicating that overall the nominal 95% interval is generally even more
biased than the nominal 99% interval. However, note that the oscillation terms are generally
larger for k = 1.96 than for k = 2.575 because of the presence of the multiplicative factor,
¢(x), which occurs in all those terms. This accounts for the fact that when n = 30 there
exist values of p for which the 95% interval has coverage over 95% but as shown in Figure 2
there are no values of p for which coverage of the 99% interval exceeds 99%.
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5 Expansion for Expected Length

The two term Edgeworth expansions presented in Section 3 show that up to the order
O(n™'), the Agresti-Coull interval dominates the standard, the Wilson, and the Jeffreys
prior interval. However, in mutual comparison of different confidence intervals, parsimony
in length in addition to coverage is also always an important issue. Therefore, for the above
four intervals, we will now provide an expansion for their expected lengths correct up to
the order O(n=%2). As we shall shortly see, the expansion for length differs qualitatively
from the two term Edgeworth expansion for coverage probability in that the Edgeworth
expansion includes terms involving n~'/2 and n~!, whereas the expansion for length includes
terms n/2 and n=3/2. The coefficient of the n=1/2 term is the same for all the intervals, but
the coefficient for the n=3/2 term differs. So, naturally, the coefficients of the n=3/2 term will
be used as a basis for comparison of their length.

Theorem 5 Let CI be a generic notation for any of the intervals CI;, Clw, Clic and
CI;. Then,

L(n, p) = E,,(length of CI) = 2xk(pq)/*n~1/2(1 — (sé—Z;)Z;—)) +0(n™?), (21)

where

d(k,p) = 1 for CI; (22)
= 1+&%*8pg—1), for Clwy; (23)

1+ k*(12pq — 2), for Clug; (24)

(25)

2 2
= 1+ 5(1352 +17)pg — =(k* + 2), for CI;. 25

9
'The expansion given in (21) is very accurate. Figure 7 plots the O(n™2) error in (21) for the
four intervals with o = .05, n = 40 and .1 < p < .9. The maximum error for the standard,
the Wilson, the Agresti-Coull, and the Jeffreys prior intervals are only .0013, .0014, .0035,
and .0006, respectively.

004
g
i

g

02

Emr
{

J00

Figure 7: The O(n™2) error in the expansion of expected length (21) with o = .05 and n = 40.
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The proof of Theorem 5 is given in the appendix. It is interesting to compare the
coefficients 6(k,p) of the n~%?2 term for the four intervals in consideration. First, let us
point out that it can be proved directly from their definitions that CIsc always contains
CIw as a subinterval and hence is always longer than Cly, . It is therefore reassuring to see
that for all k > 0, and all 0 < p < 1, indeed 1+ k?(8pg — 1) > 1 + x%(12pg — 2). For every
other pair of intervals, the exact comparison between the corresponding pair of coefficients
d(x,p) depends on k and p. For clarity of presentation, we will therefore use the notation
0s(k,p), Ow(x,Dp), dac(k,p) and &;(k, p) to denote this coefficient for the four intervals. For
convenience, we will say that Cly is the shortest interval if oy (k, p) is greater than or equal
to each of d5(x,p), dac(k,p) and 6,(k,p) and similarly for the other intervals. Then (22) —
(25) yield the following:

Corollary 1
Tr2—4 )
87 16k2—34

(ii).  CI; is the shortest interval if {2 21217 < pg < min( 4322:37, 4222:34);

(ii).  CI; is the shortest interval otherwise.

(i). Cly is the shortest interval if pg > max(:

Interestingly, for the case a = .05, i.e., kK = 1.96, this works out almost exactly to Cly
being the shortest when .2 < p < .8, CI; being the shortest when .0966 < p < .2 or
8 < p <£.9034, and CI; being the shortest when p < .0966 or p > .9034. Of course, it is
no surprise that the standard interval is the shortest when p is near the boundaries. CI;
is not really under consideration as a credible choice because of its woefully poor coverage
properties. So the conclusion might be that when we look at the coverage-length trade-off,
the Jeffreys interval is the most parsimonious for small and large p, and the Wilson interval
is the most parsimonious otherwise.

In Brown, Cai and DasGupta (1999), the integrated expected length is discussed as one of
the criteria for the performance of the intervals. It is shown, by examples, that the integrated
expected length increases in the order of C'I;, Clyy and Clsc. This is also confirmed by
integrating (21) over p from 0 to 1.

Corollary 2

1
(i). /0 Enp(length of CI,) dp = “Zn-1/2 _ 5T0-32 4 0(n-2),

4 4
1
(ii). / E, ,(length of Clw) dp = %n_l/z — %n_:‘/z +O0(n™?%);
2
(iii). / Enp(length of Clac) dp = %n_l/z + (% — l)%rn._?’/2 +0(n™2);
_ _ 37 5K kW _ _
(iv). / E, p(length of CI;) dp = 4 n~2 (% 36 —)— 1 32 4 O(n72).

Previously we saw that between the standard interval CI,; and the Wilson interval CIy the
standard interval is shorter for p near the boundaries, and the Wilson interval is shorter
otherwise. Corollary 2 shows that up to the order n=2, the effects exactly cancel and the
integrated expected lengths of the two intervals are always identical. This is not a priori
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obvious and we find it quite interesting. We also see from Corollary 2 that the integrated
expected length is always the smallest for CI; and always the largest for CI4c. So the
ranking is always the same and that is what makes Corollary 2 more valuable.

Among the alternative intervals, CIy, CI; and Clac, the actual choice has to necessarily
involve some subjective judgment and we shall return to this issue later. But first we point
out another nice feature of the Wilson interval.

5.1 Length Minimization under Coverage Constraint

The interval Cly, it should be noted, has another natural property. Sometimes one imposes
the rigid constraint that a confidence interval must have at least 1 — o coverage probability
for all values of the parameter. If p has a prior density 7(p) resulting in a marginal pmf m(z)
for X, then from Brown, et al. (1995) one has that the confidence set Cy(x), that minimizes
the expected volume E,,{vol(C,(z))} subject to the coverage constraint

Py(p € Cr(z)) > 1 - q,

b (2)rum )

and k(p) is such that P,(p € Cr(z)) > 1 — . Now if m(p) is uniform, then m(z) is uniform
too. Since the binomial distribution is unimodal with mode at [(n + 1)p|, the integer part of
(n 4+ 1)p, it follows that C,(z) is formed by inverting inequalities of the form

is a set of the form

[(n +1)p] = a(n, p) < & < [(n + 1)p] + b(n, p),

where P([(n + 1)p] — a(n,p) < X < [(n+ 1)p] +b(n,p)) > 1 — o. If we do a first order ap-
proximation of the distribution of X by the N(np, npq) distribution without any continuity
correction, and if a(n, p) and b(n,p) are chosen in an equal-tailed way so that

P(X > [(n+ 1)p] + b(n,p)) = P(X <[(n+1)p] — a(n,p)) = &/2,
then the set C;(z) that results is
|z — np|

np(1 — p)

{p:

<k}

which is the interval CIy,. Note that the formulation here is a bit different from what was
done in Theorem 5. Blyth and Still (1983) have a somewhat related discussion based on
Sterne (1954) and Crow (1956). See Casella, et al. (1994) for further discussions on decision
theoretic set estimation.

The above discussion can be made sharper, and more rigorous, if one introduces the
concept of randomized confidence procedures. In general, such a procedure is described
by a measurable “inclusion” function p(:|-), where p(p|p) denotes the probability that the
randomized set includes p when p is observed. The coverage and expected length of such a
procedure are defined, respectively, as

P(p) = Ep(p(p| )
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and
L(p) = E(length at p of CI) = /,0 6| p) db).

For a non-randomized interval CI, = CL.(p) one of course has p.(p|P) = Icr,(5)(p). (For
further discussion of such procedures see Brown, et al. (1995) and references therein.)

The following theorem describes a near-optimality property of the Wilson procedure. A
near-optimality conclusion this strong is not shared by any of the other procedures in our
study. Theorem 6 below says that among all procedures that are as good as the Wilson
interval in coverage, all the shortest ones are basically equivalent to the Wilson interval
itself, because their inclusion functions coincide with the inclusion function of the Wilson
interval. There is a minor qualification needed for this, which is carefully described in (30)
and (31) below.

Theorem 6 Consider the Wilson interval whose nominal coverage is 1 — o.. Let o > .015.
For fized n, let Cw,,, denote the collection of randomized confidence procedures whose coverage
satisfies

Per(p) > Pw(p), for allp € (0, 1) (26)

Let C1, be any procedure in Cw,, whose average expected length is a minimum, i.e.

/OIL*(;D = min /LCI (27)

CleCw,n

(Such a confidence procedure ezists.) Let {y} denote the integer for which —1/2 < {y} —y <
1/2. Then, for any € > 0 there is an n. < co such that for alln > n. and e < p < 1 — ¢,
except possibly for a Lebesque-null set of values of p,

(a). if {np} —np =0 or 1/2, then
p«(p| D) = pw(p|p) for all p; (28)
(b). otherwise, i.e. if {np} —np #0 or 1/2,

p«(p| D) = pw (p| D) (29)

except possibly for the two points, P, = z,/n and p, = x,/n where the integers x, and
z, are defined respectively as:

T T
Ty = To(p,n) = argrzna,x{m —p|: pw(p| ﬁ) =1, 2=0,..,n}, (30)

. x z
and  z, =z.(p,n) = arggnn{m —p|: pw(p| ﬁ) =0, z=0,..,n}. (31)

Remark: When 0 < |[{np} — np| < 1/2, then z, and z, are uniquely defined by (30) and
(31) respectively.
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6 Conclusions and Summary

Interval estimation of a binomial proportion is certainly one of the most basic problems
of statistical practice. We show that the standard method in universal use is riddled with
problems; so much so that it cannot be salvaged. This leads us to a search for better
alternative intervals. Following the empirical studies in Brown, Cai and DasGupta (1999),
in this article we provide the theoretical foundation for choice of an alternative interval.
Particularly important is the fact that the theoretical calculations presented here are in
remarkable agreement with the extensive numerical reports presented in that companion
article. Ordinarily, Edgeworth expansions and indeed asymptotic expansions in general
are asymptotic approximations that may not accurately reflect the behavior in moderate
samples. However, here, both for coverage and expected length, the two term expansions
are remarkably accurate in moderate samples. The theoretical results proved here therefore
correctly reinforce the more practical approach and the recommendations in Brown, Cai and
DasGupta(1999).

To summarize, the conclusion is that the Agresti-Coull interval dominates the other
intervals in coverage, but is also longer on an average and is quite conservative for p near 0
or 1. The Wilson and the Jeffreys prior interval are comparable in both coverage and length,
although the Jeffreys interval is a bit shorter on an average. If we also take simplicity of
presentation and ease of computation into account, the Agresti-Coull interval, although a
bit too long, could be recommended for use in this problem. If simplicity is not a paramount
issue, either the Wilson or the Jeffreys interval may be used, depending on taste.

7 Appendix

The binomial distribution belongs to the family of lattice distributions. The asymptotic
expansion of the coverage probability contains oscillation terms that do not appear, for
example, in the expansion for a continuous distribution. The algebra involved is somewhat
tedious. We omit much of the messy algebra in our proofs below.

Lemma 1 Let X ~ Bin(n, p) and p = X/n. Define g(p, z) = g(p, z, p, n) as in (6).
Denote Z, = n*'%(p — p)/(pq)/? and F,(z) = P(Z, < z). Then

Fu®) = () + 51— 20)(1 = 2)9(2) (p) 2 + (~g(p, 2) + 3)(2)(npa) ™"
+{(4pq — 1)2° + (7 — 22pq)z* + (6pq — 6)2}(2) (72npg) ™
HE =20 = 3)(~g(p, 2) +3) = 9%, )~ 9(p, 2) + £]}=(2npa)”
+0(n=%?) (32)
If z = z(n) depends on n and can be written as

z=M+Xn V24 Ant + 0O(n73?)

where A1, Ay and A3 are constants, then
1 _
Fo(2) = ®(A1) + [M(pg) + g1 —2p)(1~ AD]6(A) (npg)~1/?
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+(—g(p, 2) + %)fﬁ(h)(npfn‘l/ +{h - %/\1/\3 + %(1 —2p)(pg) "V M2 (A — 3)}8(M)n !

+{(4pg — 1)AT + (7 — 22pg) A} + (6pg — 6)A1}¢ (A1) (72npg) "

HI50 = 2008 = 3) = 20025 - 9(p, 2) ~ [5°(, M) — gp, M) + L} 2npa)

+0(n3/?) (33)
Proof: The expansion (32) follows, after some algebra, directly from Theorem 23.1 of Bhat-
tacharya and Rao (1976). See also Esseen (1945).

If 2= A+ Xn ™2 + An~t + O(n%/2), we expand ®(z) and ¢(z) around ).

®(z) = @A)+ dadp(M)n~V2 4 (A5 — %Al)\g)gb()\l)n_l +0(n=%/?) (34)
$(2) = (M) — Mded(M)n Y2+ O(n ) (35)

Now plugging (34) and (35) into (32) and noting that ¢*(p, z) — g(p, z) admits a one-term
Taylor expansion, we obtain (33). 1
Remark: In (33), the second O(n™'/2) and the third O(n~1) terms are oscillation terms.

Note that in the O(n~1/2) oscillation term and first O(n™!) oscillation term we still have
g(p, z) instead of g(p, A;); this is due to the discontinuity in the function g.

Proof of Theorem 1: Denote

A = n’+K*(n+2B)
B = 2n’[np+ B(2p — 1)] + kZn(n + 26)*
C = nPlnp+B2p— 1) - K>y(n+7)(n+28)?
A few lines of algebra yield
P, = Py(p € CL) = P(t < n"*(p - p)/(pa)** < w.)

where 5
B4++vB2 —4AC _
(L, ) = ( o — np)(npqg) /2 (36)

The + sign goes with u, and the - sign with £,. Expanding ¢, and u,, one has
(x*=28)(3-p) | { [(§ — pa)s* + (4pg — 3)B + §]x
K-+
N npq

Now Pp(p € CI,) = Fy(u.) — Fu(4.), and (12) follows from (33), assuming both 3 and v are
constants. 1§

Remark: (i). In the case of the standard interval, 8 = v = 0, and (36) yields

by, uy) = } +0(n~%%  (37)

(1/2 —p)ﬁ;znl/Z + I-m(pq + /432/(47?,))1/2.

(o) = ) =+ )

(38)
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For the recentered interval C1I,,, the quantities ¢,, and u,s; are obtained from (36) with
B = x?/2 and v = 0 (ii). When v is not a constant but a smooth function of p, (12) still
holds with v = v(p).

Proof of Theorem 2: The Edgeworth expansion for P,(p € Clyy) is slightly simpler because
Py = Py(p € Clw) = P(—x < n*?*(p — p)/(pg)"/* < k)

And now (15) follows from (33). &

Proof of Theorem 3: The proof is similar to the proof of Theorem 1. Denote

A = n+2s?
B = 2pn®+4k*pn+ (2p — 1)k?
1
C = p*n*+k%p(3p—1)n? + £*(3p® — 2p — Z)n — pgx®
It follows from some simple algebra that

Pac = Py(p € Clac) = P(lac < n*?(p - p)/(pg)"/* < uac)

where
B+ B2 -4AC _
(Lac, uac) = ( o — np)(npq) (39)
The + sign goes with uc and the - sign with £4c. Expanding £4¢ and u4c, one has
1 1
(bac, uac) = £{s + (% - 5)"?3”_1} +0(n™%?) (40)

with the + sign going with u4c and the - sign with £ac. Now Puc = F,(uac) — Fu(lac),
and (16) follows from (33).

Expansion for Beta Prior Intervals

We will prove a more general result than Theorem 4.
Let X ~ Bin(n, p). Suppose p has a prior distribution Beta(a, b). Then a 100(1 — @)%
equal-tailed Bayesian interval is given by

CIB = [pla pu] = [Ba/2,X+a, n—X-+b, Bl—a/Z,X+a, n—X+b]' (41)

The following gives the two-term Edgeworth expansion of the coverage probability of the
interval (41).

Theorem 7 For any fizted 0 < p < 1 and any 0 < a < 1, the coverage probability of the
Beta prior interval (41) satisfies

By(p e Clp) = (1 — ) +[g(p, £8) — g(p, us)l¢(k) - (npg)~*/?
+ (2T, — kT2 — %(35 — &)(1 = 20)(pa) 2Ty + w(k)]$()n"

+ [a — g + (g —a—b)p|Q21 (s, up) + Qa2(—x, K)]kd(k)(npg)~*
+0(n"%?) (42)
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where w(k) is defined in (11), £p and up are defined as in (45) and

T, = (GR35 - o)+ (a+b— 38— Dpl(pa) 2 (43)
T, = %/ﬁ(pq)_l +(a+b— %lf — %)fﬂ — 72(p) (PQ)_1/2(8PQ)_1’§3
T (a+b— k2 — 2)+ () (p0) V2 — (& p)(pa) 'y (p)r (44)

3 3 2

with r1(p) and ro(p) given in (51).

We will use the direct expansion method to derive (42) (see Barndorff-Nielsen and Cox
(1989) and Hall (1992)). The expansion can also be derived using asymptotic expansions for
posterior distributions (see, e.g., Johnson (1970) and Ghosh (1994)).

Proof of Theorem 7: The posterior distribution of p given X = z is Beta(z + a,n — z + b).
Denote by F'(z; my, my) the cdf of the Beta(m,, m2) distribution and denote by B(a; my, ms)
the inverse of the cdf. Then

PlpeClg) = PB(a/2;X+a,n—X+b) <p<B(l—a/2;X+a,n—X+D))
= Ple/2<F({p;X+a,n—X+b)<1-—0a/2)
Holding other parameters fixed, the function F'(p; X + a,n — X + b) is strictly decreasing
in X (see, e.g., Johnson, et al. (1995)). So there exist unique X; = p;(1 — /2, p, a,b) and
Xy = p2(a/2,p, a,b) satisfying
Fip; Xi+a,n—X4+b)<1-a/2 and F(p; X;—1+a,n—(X;—1)+b) >1—a/2,
F(p; Xy+a,n—X,+b) >0/2 and F(p; Xy +1+a,n— (X, +1)+b) <a/2

Therefore
P(p € Clg) = P(lp < n**(p — p)/(pg)*'* < ug)
with
ts = [;(1—/2,p,a,b) —npl/(npg)*/>?
up = [pa(/2,p,a,b) —np|/(npqg)"/? (45)

The quantities £p and up are defined implicitly in (45) through p; and p,. The proof of (42)
requires an asymptotic expansion for both £z and ug. We do this below.

Step 1. Denote

rL = .'17+Cl—]., n1=n+a+b—2
1= T/, =1-p
1 1
S Ve -1/2 __ 1/2, —1/2
8 n (1101 + —— $1) (mq1) "y
_ I‘(n+a+b) _ F(’I’Ll +2)
T T Ta+aTm-z+b6 D@+ (o + 1)
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Here p; is the mode of p under the posterior distribution. Let Y = (p — p1)/s. Then the
conditional density of Y given X = x is

b(y) =7 s(pr+ sy)™ (@ — sy)™ ™.

Step 2. Let L(y) = logy(y). Then it is easy to see that L'(0) = 0, L"(0) = ~1, L&)(0) =
2(1 — 2p1)(naprq1) Y2, and L@ (0) = —6(1 — 3p1q1)(naprqs) " Applying Stirling’s formula
to the Gamma functions in L(0), one gets, after some algebra

F(nl + 2)
log(
F(iL'l + 1)1"(n1 -1+ 1)
+ z1logz1 + (n1 — x1) log(ny — z1) — ny logny

L(0) = ) + log(z1/* (g — 21)Y?n /%)

= 3 10g(2m) + (35 — = (mar) i + O )
Expanding L(y) at 0, one has
L(y) = —% log(27) + cony* — %yz +eny 2% + enT 'yt + O(n 3/2) (46)
where ¢o = 15 — 5(p1a1) ™, 1 = (1 — 2p1)(prqr) V% and ¢, = ~1[(p1g1)™* — 3]. Then
W) = 0 = 601+ e Y+ (o + 2N+ 0T (41)

Step 3. Integrating both sides of (47) from —oo to z, we have
HE) = [ 9)dy=8() - u(@8(En " +ua)o@n + 0w (49

where v1(z) = —c1(2% + 2) and vy(2) = —[32(2° + 52% + 152) + c2(2% + 32)]. (Because the

O(ny 3/2 ) term in (47) is bounded by a polynomial in y times ¢(y)n; nd %)
We wish to find an expansion for the quantiles of the distribution H Forfixed0 < a < 1,
let &, = H (). It is easy to see that £, , — 2o = ®71(a) as n — co. Let

fa,n =2yt '7-1"7'1_1/2 + T*nl_l + 0(77'1_1)'

Plugging in (48) and solving for 7y and 7., after some algebra, we get

1
= 5(1 — 2p1) (25 + 2)(P1Q1)_1/2
1,11 L 13, T
T = (36201 + 5z 36 )(pIQI) (36za + 36za)

Step 4. It follows that an approximation to the limits of a 100(1 — a)% interval is

1
=(1 = 2p1)(K* + 2)n7* + {k(p11)/*n7 2

3
R (prg0) Vs (oo + ) ma) ™ (ot 4 ]+ O) (49)

(D1, pu) = p1+

36 36 ) 36 36
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Let

ri(p) = a+%(m2—1)—[a+b+§(nz—1)]p (50)
r2(p) = {~(a+b-2)/2+(1/2-p)a—1— (a+b—2)pl(pg)™" 7
+ (5 + 59)(00) ™ = (o + o) b slpg) 2 (51)

Rewriting the approximate limits (49) in terms of n, p = z/n and § = 1 — p, one has
(P, pu) = (B+r1(B)n™) £ {K(pd)"*n ™% + r2(p)n "%} + O(n™?) (52)

with the + sign going with p, and the - sign with p;.

Step 5. Now we expand the coverage probability by using (33). In order to use (33) we
invert the inequalities p; < p < p,, into the form of

s < n'(p —p)/(pg)"* < up.
We need the following lemma. The proof, which we omit here, is straightforward.

Lemma 2 Let wy and wp be two functions with continuous first derivative. Then the roots
x, of the equations

z £ k[z(l — )02 4wy ()t + wo(z)n 32 —p =0 (53)

can be expressed as

_ 1 PP _
z. = pTFk(pg)/?n~V2 4 (5 —p)* — wi(p F s(pg) 2~ 2)In ! — wj(p)n /2

- {[é(pq)_l/z — (pg)?]x® — (% — p)(pg) Vw1 (p)r}n 32 + O(n™?) (54)

All the — (+) signs in F in (54) go with the + (=) sign in & in (53).

Applying Lemma 2 to (52), we obtain

P(p € Clg) = P(ts < n'*(p — p)/(pg)"'* < up)

with
(tpus) = e+ (4 =)+ (a0 = 36 = Dpllnp)
+ {(8pq)‘1'€3 +(a+b— %52 - g)m + 79(p) (pg) /2
~ (5~ P)p0) )Ryt + O ) 55)

The expansion (42) now follows from (33). 1
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Proof of Theorem 4: In the special case of Jeffreys prior, a = b = 1/2. Simple calculations
show that

ni) = G+ 5)1-2) (50)
@) = (g5 + )00) ™~ (Gor® + 30)lk(pe) (57)

Plugging (56) and (57) into (44), after some algebra, the expansion for Jeffreys prior interval
(17) follows from (42). 1

Proof of Theorem 5: Throughout this proof, we will use the notation w = (X/n — p)/p and
T =p/q.

The interval CI;. The length of the standard interval, denoted by L, is

X
L, = 2nn_1/2[g(1 — {)]1/2 = 260" (pg) 2 (1 + w)V2(1 — Tw)/?
n
1—7 (1+7)2
where R;(w) < Cy|w|®+ Ca|w|*+ Cs|w|® for universal constants C;, C; and Cs, depending on
p, but not n. Since E|X — np|® = O(n*?), E|X — np|* = O(n?), and E|X — np|® = O(n?),
it follows from (58) that

= 2kn"%(pg)Y?{1 + w? + Ry(w)}, (58)

E(L,) = 260" (pg)*(1 — —) + O(n™?), (59)

8npq
which establishes (22).
The interval CIy,. The length of the Wilson interval, Ly, is

_ X K2
Ly = 20"/ +Kuz[—( - )+
= 26n " Y2[1 — 2071 + O(n~2)](pg)/? -
1—7 (1+7)2 , K2
{1+ G W g W +8npq+RW(w)}, (60)

where Ry (w) < Ci|w|® + Cs|w|* + Cs|w|® + Cyn~2 for universal constants Cy, C,, Cs and Cy.
As in (59), it now follows from (60) that

2

E(Lw) = 2xn*(pq)/*[1 - 2—P+Om4na+-8m1+0(—ww
_ 8kipg+1 — _
— 1/2 1/2117 _ 2
2kn”%(pg) "1 S1pa ]-+<?(n ) (61)

which establishes (23). The proof for the Agresti-Coull interval is very similar to the proof
of (23) and so we will omit it.

The interval CI;. Using Equation (52), the length of the Jeffreys interval, L, is

Ly = 26072 (1= NP2 4 205 4 O(n™?), (62)
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with p = X/n and the function r5(-) as defined in equation (57). Note that for any 0 < p < 1,
r2(p) is differentiable. The first term in (62) exactly equals the length of the standard interval
C1I;. Therefore, from (22) and the mean value theorem,

E(L;) = 2&nY*(pg)**(1— —n—lﬁ) +2ry(p)n %% + O(n?)
(2/9)(135% 4+ 17)pg — (2/9) (K® + 2)
8npq

by algebra from the definition of 75(p) in equation (57). This establishes (25) and completes
the proof of Theorem 5. g

= 2n "2 (pg)Y2{1 — }+0(n™?),

Proof of Theorem 6: Brown, et al. (1995) shows that CI, essentially uniquely satisfies the
following rule

1 if B(n,p;np) > k(p)
| (63)

p(p|P) = { 0 if B(n,p;np) < k(p)
where k(p) is chosen so that CI, satisfies (26). Here B(n,p; ) denotes the binomial proba-

bility mass function. Randomization is allowed when B(n,p;np) = k(p), so long as (26) is
satisfied. Note that for any K < oo

B(n,p; ) = §(2) + 5(2° = 32)(1 ~ 20)(2) (npa) ™ + O(n ™) (64

where z = z(z) = (z — np)(npg) /2, uniformly as n — oo for e < p < 1 —¢, |z| < K. Note

next that for x > np, we have z(z) > 0, and

$(2(z +1)) — ¢(2(z)) = 2(2)(npg) ™/* + O(n™") (65)

uniformly for € < p <1 —¢, |2| < K. A similar expression holds for z < np.

Now, suppose {np} —np = 0 or 1/2. Then (for e < p < 1 — ¢ and n > n,) there are
two distinct points satisfying (30) and (31) respectively and two satisfying (63). Denote the
corresponding r values as Z,,1, Z,2 and z,1, £, 2. With appropriate labeling

Tr1+1 =71 <np < Tpp=x,0— 1.

Also
—2(Tay1) = 2(x02) = K+ O(n~Y?).

From (64)
min B(n, p;2ai) > $(2(2a2)) = %IKJ?’ - 36]|1 - 2p|¢(x)(npg) 2+ O(n™),  (66)
and max B(n,p;zri) < ¢(2(ze2) +1) - é—lns’ — 3x||1 — 2p|4(x)(npq) /> + O(n™"). (67)

Hence, from (66) and (67)

min{B(n,p;2) : pw(p| ) =1} — max{B(n,p;z) : pw (pl 7) = 0}

= minB (n,p; Taz) — max B(n, p; r,)

v

(5 = 511° = 3D)9(s) (opa) /% + O(0 ™) > 0 (69)

28



for k < v/6 and n > n,. Since a > .015 implies k < 2.44 < /6, it follows from (68) and (63)
that p.(p| ) = pw(p| p) a.e., as claimed.
When {np} — np # 0 or 1/2 similar reasoning shows that for any integer 3; # z, having

pw(p| L) = 1 and any integer y, # z, having pw(p| 2) =0
B(n,p; y1) — B(n,p; y2) > 0 (69)

fore < p <1—¢, n > ne Conclusion (30) then follows from this, (63) and the unimodality
of . 1
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