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Abstract

Following the developments in DasGupta et al (1999), in this article we propose and
explore a new method for construction of proper default priors, and a method to select
one Bayes estimate from a family for actual use. The results are based on asymptotic

expansions of certain marginal correlations.

The answers that emerge have nice general structures. The default prior methodology
finally amounts to minimization of Fisher information. As a consequence, for any location
parameter problem, the Bickel prior works out as the default prior if the location parameter
is bounded. The selected Bayes estimate, on the other hand, corresponds to “Gaussian -

tilting” of an initial reference prior.

The calculations are illustrated with examples and computation.

1. Introduction

A radically different way of looking at the Pearson correlation coefficient in statistical
methodology is detailed in DasGupta et al. (1999) by projecting it as a binding theme
to connect together various approaches to statistical inference. It is also shown there
that some of the properties of the Pearson correlation coefficient can lead to useful and
substantial developments in mathematical statistics, particularly Bayesian statistics. This

last theme is further developed in this article.

We begin with an observable X which is distributed as f(z|f). The parameter 6 is
distributed according to a prior 7, and hence there is then a joint probability distribution

which we shall call P. As in our previous article, all the developments here also follow
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from consideration of the Pearson correlation coefficient between two functions g;(X,0)
and g2(X, 6) under the probability distribution P. However, most of our derivations here
involve asymptotic arguments which can be rather intractable in general, and hence we
shall mostly restrict our attention to random samples from location families. The exact

setup required is outlined later in this section.

In Section 2, we use the correlation coefficient to address an important problem in
robust Bayesian analysis. The overwhelming bulk of the work in robust Bayesian analysis
has dealt with sensitivity with respect to the choice of the prior. However, the problem of
selecting a specific Bayes estimate is also an important one. Indeed, classical robustness
flourished and was taken seriously because specific procedures such as M estimates were
developed. We first select a reference prior =; this reference prior need not belong to the
family I' of priors in consideration. However, usually one will choose 7 from inside I'. For
a general prior v in I', we then consider the correlation p, (0, d,) as a criterion for selecting
a specific estimate d,; p, is calculated under the chosen reference prior 7. We maximize
an accurate approximation p,(6,d,) over §,. The specific chosen estimate §, is Bayes
with respect to a prior density of the form v(6) = constant -7 (6) - e~ 57" There are
several interesting things about this. First, the generality of the form; one always gets
a Gaussian factor. Second, v(f) has the following interpretation: presumably one will
start with a flat reference density m(6) due to robustness concerns. The final prior v(6) is
formally just the posterior density of # when a Gaussian observation has been obtained and
6 has the prior 7(0). By starting with a flat prior 7 and ultimately settling for a “formal
posterior” as v, one will pull in the tails but it will still be a more conservative choice than
a straight Gaussian prior. We have examples then illustrating these results. Note that, in
other contexts, Bayesians have been talking about such a “tilting” of an initial prior by
collecting a pilot sample; see Perez (1998) for example. It is interesting that we see this

tilting emerge in a purely theoretical way in our results here.

Next, in Section 3, we apply the correlation criterion to outline a new method for
construction of default priors. Default prior Bayesian analysis has been a very active area
of research for a considerable time. After the initial classic contributions of Jeffreys and
Laplace, the recent renewed interest has much to do with objective Bayesian inference

and the realization that default prior Bayes methods often provide satisfactory frequentist



properties. See Berger (1986), Efron (1986), Stein (1982), among many. Conventional
default priors in use tend to be improper; thus, nice frequentist properties like admissibility
have to be often established case by case. We develop here an outline for construction of
proper default priors. The method suggested is general, but we have worked it out here in

detail only for a location parameter.

The method we suggest is as follows. Many Bayesians take the view that post-data
opinion about a parameter should be reported simply in terms of a posterior density.
On the other hand, there is another clear candidate for such a summary, namely the
likelihood function. Just as one can try to minimize an appropriate distance between
the two summaries, we suggest maximizing the correlation between them under the joint

probability measure P.

Now, the exact correlation, of course, is not something that one can work with. So we
provide an appropriate expansion for the correlation, and maximize the appropriate term
of this expansion. The expansion is very technical and is presented in the appendix. It
is remarkable that at the end the maximization based on this expansion corresponds to
minimization of the Fisher information of the prior in the chosen family of proper priors.
Minimization of Fisher information is a well known variational problem that has arisen
in other statistical problems; see Bickel (1981), Bickel and Collins (1983), Huber (1964,
1974), Levit (1979, 1980), Kagan, Linnik and Rao (1973), and Brown (1971). We find
this ultimate reduction of our approach to minimization of Fisher information quite in-
teresting. As a result of this reduction, the Bickel prior (1981) is now seen to have the
asymptotic correlation maximization property; compare this with the asymptotic entropy

maximization by Jeffrey priors (Clarke and Barron (1994)).

The asymptotic expansions we needed are substantially more intense than what is
necessary in other problems (e.g., Ghosh, Sinha and Joshi (1982)) because we need ex-
pansions to more terms for our results. The derivations thus require more smoothness
assumptions on the likelihood function and the prior. Exact finite sample implementation
of our approach was not pursued in this article, except we have shown that our formulation

leads to the uniform prior in the Binomial case for every finite sample size n.

1.1 The Set-up



The following general notation will be used in the sequel: 7 and v will denote prior
densities for the parameter 8, m the marginal of X, and Ey will denote conditional ex-
pectation given . Covp, Varp, and p, will, respectively, denote the covariance, variance
and correlation under the joint distribution P, whereas Cov, and Var, will denote the

covariance and variance under the distribution 7« on 8.

We consider i.i.d. observations Xi, Xo, ... from a location parameter density f(z|0) =
e~?(==9); we assume that h is seven times continuously differentiable, and A(®) and A(7,

are bounded. The following notation will be used:

L(8,z) = Zlogf(x,-|0), 0 = mle of 4,
=1

‘C( ) = d9z£(97$)|0:é)
di
l; = Fy <W10gf(X1|9)) ,
o? = ls,

@\
6% = — <£T) : (1.1)

wy = varp(h” (X))
We also assume that o2 > 0, £, = 0 for odd %, and £ = 0, i.e., the mle § solves the

likelihood equation.

By elementary calculations, one can see that £(3) = O(n?), E,(W,,) = O(n™!) and
EP(W?2) = we + O(n~1), where W, = /n <% + U%) The normal location model with
known variance fits into our set-up trivially. It can be checked that some other standard

location models such as Student’s ¢ and Logistic also fit into our set-up.

Regarding the prior distributions under consideration in this article we make the

following assumption.

Assumption A. The reference prior density m and every density v in I' is five times
continuously differentiable a.e., with bounded fourth and fifth derivatives, and E,(6) = 0,
E,(0?) < oo.

2. Selecting a Bayes Estimate



Robust Bayesian analysis has almost exclusively concentrated on sensitivity of the
Bayes estimate and other posterior quantities to the choice of the prior. There is an
extensive literature on this now; see the review article Berger (1994). Far less has been
done in the direction of presenting methods for choosing a Bayes estimate from a collection
specified by a family of priors; see Zen and DasGupta (1993) for some results on this
question. We present below a method for selecting a particular Bayes estimate from a
collection for the location parameter case, by using the correlation criterion. The notation
and the final result are as follows: let I' be a specified family of priors. Let m be a special
prior, a reference. Let v be a generic element of I' with 4, as the corresponding Bayes
estimate. The criterion for selecting a special 4, is to maximize over all v the correlation
ps(0,6,), under the reference prior m. The specific prior ¥ which does this is in general of
the form v*(6) = constant 7(6) - e~ 570" Tere i, 7 can be flexibly chosen so that v*
belongs to I'. If no such V> belongs to I', our method fails. But in many common examples,
one will be able to find v* of the above form in the class I". Note the interesting general
form of v*. If the reference prior 7 is flat, the selected prior v* still has normal tails. The
selected prior v* is exactly a normal if and only if the reference 7 is already normal. We

will see examples after the following presentation.

2.2. A Useful Approximation to p,(6,6,)

The problem we wish to address cannot be solved in closed form (and possibly in
any form) if we work with the exact correlation p,(6,6,). Instead, we again present an
approximation 5,(6,6,). We have found in some test cases that the approximation is
accurate; it is an asymptotic approximation, but can be highly accurate even for n = 3.
The derivation of the approximation is intensely technical. So we shall break it up into

little steps at a time and we will present only the gist.

We now present the approximation §,(6,d,) which we shall maximize over v. For
this, first, we need an expansion for the Bayes estimate §,(x) as a function of the MLE 0

and z — 6.1 (here 1 stands for the vector with each element as 1).

Proposition 1. The Bayes estimate 4, (z) satisfies

N 2.4 4 (3) "(h
5y(x)=9+%y(?)+ 2 (ﬁ +2V(0)Wn)
14

v(f)  2n3/2



4n Vn
+O(n=%?), (2.1)

4 "6 ) ) 7 (4) (5) (3)
Lo ( <0>_uw)uA(e)+v<e>az<2wﬁ+£7)+Uz<£_+2£_Wn>

uniformly in z.

Proof: Details of this long derivation are deferred to Appendix. We would like to note
here that expansions for the posterior mean of this nature can be found in Ghosh (1994),
Ghosh, Sinha and Joshi (1982), Johnson (1970) and Lindley (1961). However, they are only
accurate up to O(n~3/2), whereas we need an approximation which is good to O(n~5/2)

(and, this of course requires a lot more work).

Using Proposition 1, we have the following asymptotic expressions for the covariance
of 8, with 6 and the variance of §,. Proofs of Propositions 2 and 3 are again algebraically
very intensive. However, we have outlined the proof of Proposition 2 in the Appendix since

many other proofs (including that of Proposition 3) are similar.

For notational convenience, the following notation is used:

a=[0n(0)28d0, b= [0m(6)rDde, \

c= fgﬁ(g)%dg, d=[on"(0)2Qd0, f = [ '(6) & dp, r (2.2)
v' (9 2 V(0 2
g=7(0) (49 do~ (J n(0)5a0) J
Also, recall that wy = Varp(h" (X)) and Iy = Ep(h(*(X)). In addition, k(r), ki (r) and

K (m) used below are constants which can depend on 7 but not on v.

Proposition 2.
2 4 4

Covp(8,6,) = V(r) + "—a + J—(3w2 o)+ 2%(1) —c+d+2f)
5 6 ab 5
(3w2 +l)a+ — ™ —k(m) +O(n™2). (2.3)
Proposition 3.
2 4 ot

Varp(s,) = V(x) + (—;—(1 +2a) + g—nV( )(3wa + 1g) + —~(b —c+d+g)
556 o _s
+ W(?»wz +14)a + mkl(w) +O(n™2). (2.4)
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These two results now lead to the desired approximation to p,(6,4,) stated below.

Proposition 4.
Pp (9, 51/) = pp (67 51’) + O(n_%)7

where
" . o? (o2 1 o g, 1 a2 1
pe(0,6,)=1— on (g(?)wz +14) — V—(ﬂ'j) + oz {(f - E)V(Tf) + (a+ —2—)V2(7r)}
+ #2(71—) (g + %(3’LU2 + 14)(2 — 28—(3102 + 14)) -+ K(ﬂ')) ] (2,5)

Proof: Use the definition of p, (6, §,) and substitute the expressions (2.3) and (2.4) given

above. (2.5) will then follow on simple algebra. Details are given in Appendix.

We can now state the result describing the particular selected Bayes estimate §,(X).

Proposition 5. The estimate §,(X) maximizing p,(6,6,) is Bayes with respect to the
prior density
v(0) = ce” 72O 1(p), (2.6)

where u, 72 are arbitrary and c is a normalizing constant.

Remark. v(8) has the following nice interpretation. Start with a reference prior 7(6).
From this construct the posterior density when an observation from the N(8,72) distri-
bution becomes available. Take this as the final prior v and use the corresponding Bayes
estimate §,. Now, what is the effect of such a prior? Presumably, one will start with a
rather flat prior m as the reference due to robustness concerns. The normal factor in the
expression for v(8) will pull in the prior compared to the reference 7« and §, will provide
greater shrinkage than é,,. This will be further amplified in examples that follow. We now

sketch a proof of Proposition 5.

Proof: We will give the proof for the case V(n) = Var,(f) = 1. A minor modification
works for V(m) # 1.

Step 1. From (2.5), we would like to maximize f — § +a + ‘—‘23 and hence minimize

v 7! V! v'(0
g—2f —2a—a?= Var,( ,,((:))) — 2 Covr (0 + 7r((00))’ u((g))) B COV?T(G’ —V_((é_)l)
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Step 2. Using the fact that V(m) = 1, observe that Cov, (6,60 + 7;((96))) = 0.

Step 3. By using Step 2, write

YOy 5 Goy
8 2 <

{U ( ”>>} fr{ w0 - (0 %0}
— Var, > (2.7)

1, by Schwartz s inequality,

o Tw)t el - Ty

%-9-%:%%. (2.8)

Var, (

D
+
>}
/\
D
p
—_
D
p
\/
Q
@]
<
RS
N
“%
t\
Pamm
D
o
H e

Step 4. Since Var, ()

Var, { (0

>0,

with equality if

Step 5. The solutions of the differential equation (2.8) are of the form (2.6).

2.3. Investigation of the Selected Bayes Estimate and Examples:

Suppose the reference prior density is 7(6) = %e"ol, a good middle ground between
sharp and flat priors. Further suppose that the family I' under consideration contains only
symmetric priors and so v(6) is of the form v(f) = ce"'ele_%. There is a value of 7
(approximately 7.52) that gives the largest variance among all priors of this form. For our

first illustration, this is the specific v(0) we use.

Example 1. Let us take X ~ N(6,1). Under both 7(0) and v(6), the marginal density of
X can be found in closed form and hence the Bayes estimates 6,(X) and 6,(X) can also

be found in closed form by using the familiar identity (Brown (1985)):

o2 m! ()

o(z) =0+ ———=,
(z) = n my,(z)
where m,, is the marginal density. Some selected values are reported below; as commented

before, d,, results in a bit more shrinkage than d,.
X 0 .5 1 1.5 2 3 5 8 10 15

§-(z) 0 .241 503 .806 1.161 2.026 4 7 9 14
§,(z) 0 .238 497 795 1.144 1.992 3931 6.878 8.844 13.758




Example 2. Consider X ~ Logistic(, o), with known ¢ and having density
T — z—0). |
£(e16) = 2 exp(- =) [1 4 exp(- 220

In this case it is not possible to obtain in closed form either the marginals or the Bayes

estimates, but both 6, (z) and §,(z) can be easily computed for any given z.

Again, some selected values are reported below for two different values of o, 0.5 and 1.
As before, 6, receives a little more shrinkage than 6,. Further, o = 1 results in much more
shrinkage than o = 0.5, with the values for ¢ = 0.5 being closer to those in Example 1.
cg=0.5
X 0 5 1 1.5 2 3 5 8 10 15

d.(x) O .276 580 .922 1.301 2.147 4.030 7.002 9 14
S(z) O 274 574 912 1.285 2.113 3.948 6.834 8.771 13.607

og=1.0
X 0 .5 1 1.5 2 3 5 8 10 15

() 0 .166 .336 .513 .698 1.095 1.970 3.386 4.357 6.820
6,(x)y 0 .163 .329 .501 .680 1.059 1.864 3.038 3.722 4.938

From the numerical tables above it seems that in these cases when the reference prior is a

double exponential, 6, and §, behave similarly. For another choice of the reference prior,

this need not be the case.

To see this, consider the reference prior density m(8) o (y35273) 7, density of the

Student’s t3 prior which is a flat prior. Suppose again that the family I' under consideration
2

contains only symmetric priors and so () is of the form v(6) = c(l_l_a;z/:;))”e"zr2 .

Example 3. Now consider X ~ Cauchy(0, o), with known ¢ and having density
1

(o) (1+ (2)°)
Some selected values are reported below for o = .2.

X 0 5 1 1.5 2 3 5 8 10 15

é-(x) 0 349 .687 1.002 1.284 1.735 2197 2216 2.065 1.645
6,(z) 0 .348 .683 993 1.267 1.685 1.976  1.60 1.15 481

f(=]6) =




Note that, for small and moderate values of z, 6, and 4, behave similarly, whereas for
large values ¢, results in much more shrinkage than §,. But we would expect this because
the penultimate v has normal tails, whereas the reference 7 has very flat tails.

3. Further Potential for Practical Uses
3.1. Selecting a Default Prior

Extensive literature exists on default prior Bayesian analysis; the literature includes
much general theory and methods and applications of these to specific problems. There
seems to be widely different opinions regarding appropriate definitions of default priors. We
will say that a prior chosen from a specified class by a specified (and hopefully reasonable)
selection rule is a default prior. Assessment of such a default prior is a separate issue and
we will not address that here. Our intention is to show a potential use of our correlation
approach in this important problem. In addition, as we shall show, our proposal has a
very distinct connection to the Fisher information. These are interesting consequences of
our general approach and the Bickel prior arises as special from this development. Among
the literature on default priors, particularly pertinent to our discussion are Cifarelli and
Regazzini (1987), Clarke and Wasserman (1993), Ghosh and Mukerjee (1992), Datta and
Ghosh (1995), and Kass and Wasserman (1996).

The approach we take is the following. A likelihood based method will summarize
the post-data opinion about 6 by the likelihood function f(z|f); a Bayesian method based
on a given prior 7(6) will use the posterior density m(6|z). Minimizing a suitable distance
between these two summaries is a well accepted approach for construction of default priors.
We are proposing, instead, maximization of the correlation between f(x|6) and 7(f|z) in

the joint probability space.

Before we derive the results of this section for the location parameter case, let us see
an important case as an illustrative example for our suggested approach. This example will
show that the general approach we are suggesting has the potential for producing common

sense default priors.

Example 4. Suppose X ~ Bin (n,6) and we wish to estimate 6. In the literature,
various priors have been suggested as default priors for 8, the uniform and the Jeffreys

prior included; see Berger (1986). It is well known that if 8 ~ /[0, 1], then, curiously, X
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has a marginal uniform distribution too. Thus, 7(f|z) = (n + 1) f(z|9), for all z and all
. We therefore have the curious result that the correlation between f(z|0) and 7(0|z) in
the joint probability space is 1 if @ has a uniform prior. A fortiori, the uniform prior is the
default prior for 8 according to our criterion just as long as the class of priors entertained
includes the uniform prior. Thus, in the important binomial case, our general approach

leads to a credible default prior. This is encouraging.

For ease of exposition, we shall only state the main results here. Major steps involved
in the proofs will be outlined in the appendix. Proofs of many of these steps are similar,
and hence details of only some are given in the appendix. The set-up required in this
section is similar, but somewhat weaker than what is stated in Section 1.1. Specifically,
it is enough to assume that the likelihood function is continuously differentiable five times
with a bounded fifth derivative. With regard to the prior densities also, we can weaken

Assumption A, and work with the following Assumption B.

Assumption B. The class I' of prior densities under consideration consists of prior densi-
ties m which are three times continuously differentiable a.e., with bounded third derivative,

and E.(0) =0, E,(0?) < co.
3.2. An Expansion for Correlation

It is not possible to derive any analytical results by working with the exact marginal
correlation p, (f(z]0), m(0|x)). We will present an expansion for the marginal correlation;
in this expansion, the leading term is 1, and the second term is —-‘“7‘73 - I(m) + 22, where
I(r) is the Fisher Information of the prior w, a; > 0 is an absolute constant and a5 depends
only on f. Therefore, according to our correlation criterion, we propose to maximize this
second term as a rule for selecting a default prior. This is formally similar to certain
results in Clarke and Barron (1994) and Clarke and Wasserman (1993). As indicated in
the Introduction, we thus end up minimizing the Fisher Information of the prior, a well
known approach which has been adopted by other authors for different reasons altogether.
This connection of our default prior methodology to minimization of Fisher information is

interesting.
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Proposition 6. Under Assumption B,

pp(f(210),w(0lz)) =1 —

7 col(m) — d {crws + (c1 — co)la} + o(n™Y),
(3.1)

where I(w) is the Fisher Information functional, and c¢1, c2, ¢3, c4, c5 and cg are the

2n(c; — c2) 8n(c; — c2)

following constants:

o= [ 8@d= 2y )
ca = [0, 2% (2)dz =
cs = [20 ¢*(2)dz = 5
ca = [0, 229?(2)dz =
cs = [0, #*¢*(2)dz =

1

ce = ffooo 223 (2)dz = 573

. §’H §|“

§

7

Remark: The constants ¢4 and cs appear in the derivation but ultimately disappear.
Since ¢; — ¢3 = .01231 > 0, we would want to minimize () in appropriate families I'. A

formal derivation of the expansion is outlined in the appendix.

3.3. Illustrations

Consider a general location parameter model (with parameter ) which fits into our set-up.

Then we have the following results.

a. Suppose || < 1. Then from Bickel (1981) or Huber (1974), the following prior density
achieves the minimum Fisher Information in the class of all priors (i.e., now compactly

supported on [—1, 1] since this is the parameter space).

_ fcos?(30), if|0]<1;
m(0) = { 0, otherwise.

Thus, the Bickel prior is the default prior under our correlation criterion.

b. Instead of constraining the parameter space to [—1,1], we could obviously also look at
this prior as the solution in the unconstrained problem with I' consisting of only priors

which are compactly supported on [—1,1].
c. Fix 7 > 0, and consider

= {ﬂ' : 7w is symmetric about 0 and / 6?7 (0) df = 7'2}.

—00

12



The prior which achieves the minimum Fisher information in this class is N(0,72). (See
Kagan et. al. (1973).) This class, however, is somewhat restricted since it excludes very

heavy tailed priors such as Cauchy and ¢,.

d. Now take

r'= {71' :m(0) = /gb(Qe_”)u(d'y), p an arbitrary probability measure on [—oo, oo]}

This is a useful collection of priors in robustness since it is the class of scale mixtures
of normal priors, thus including heavy tailed distributions like Student’s ¢ (Cauchy being
a special case) and double exponential. Unfortunately, it is the case that (see Bickel and

Collins, 1983) the infimum Fisher information for this class is 0.

e. Bickel and Collins (1983) then modify this class and consider instead the e-contamination

class (in some other context),

= {7r :w(0) = ep(0) + (1 — e)/[ d(0e= ") u(dy), 1 arbitrary }

—00,00]

They show that the 7 which minimizes the Fisher information in this class is given by 7*

where

T(0) = (0) + (1= ) D _pio (070,

with 0 < 0; < 00, 0 < p; < 1, Y22, p; = 1. However, identifying the p; and o; is a

numerically challenging problem.

4. Appendix

Proof of Proposition 1. If v(#) is any prior density, then the Bayes estimator of § with

respect to this prior is
6,(z) = J 0 exp(L(6, z))v(0) db
v Z) = fexp([,(e,g;))y(g) do

_ gy L6 —0)exp(£(0,2))v(0) o
[ exp(L£(0,z))v(0) db

=60+ R,(z), say.
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Now note that v is continuously differentiable 4 times, and that the 4th derivative is
bounded. Expand £ in a Taylor Series around #, and note that L£©)(8,z)/n is uniformly
bounded. Then, using (1.1), letting z = /n(f — 6) /o, and letting ¢ denote the standard

normal density, we obtain

[ (8 — 8) exp(L(6, ))v(9) do

Bin(2) = [ exp(L(8,z))v(8) do
(0 — ) exp(— 52 (6 — 6)? + (6 — §)3 {f’) (0 — 0)PEZLE2) Y, (g) gg
 Jexp(—2 (0 —0)2 + (0 —0)3ED 4 ... 1 (9 - )56‘” + (6 — 6)6 £y, (9) g

2 0.2

= [/ %zexp(—%(l - %Wn))

o3 .3 ot L@ o’ £(5)
142,38 4 5 2
Yot m T2t T T 1momzt o TO0T)

2

1

o3
A g 1A 0" o 3 3
X qv(0) + —=zv (9)+%z v (9)—|—6 573 % 3,3)(0) + O(n~ )} dz]

2 2 3 (3) 4 (4) 5 (5)
/[/exp(_z—(l_"—wn)){1+"—z3£ LA o N z5£n_+0(n_2)}

6n~ /n  24n" n 120n3/2

3 -~
sz (0) + O(n—2)} dz]

2 4
[/ 24(z) {1 + o= W+ W2zt

NG = W38 +0(n~ )}

48 3/2

5 (5)
sk +0(n—2)}

N

2 3
A N B 9 3,3 —2
v(0) + —zv (0) + 5 ? V 0) + 6n3/22 v (0) + O(n )} dz]

48 3/2

ot o’ £®)
1407 8357 L T ap@ 5
Tt m Tt T ot

W32% +0(n~ )}

{
{
/¢(z) {1 b W2+ ”—ZW,%# +
{

+ O(n_z)}

X
—
<
—
>
-
+
N
kS
—~
=
+
N
~
>

Va0 0) + 0=} ]
o Num(z)

~ V/n Denom(z)’

Num and Denom denoting the numerator and denominator respectively. These can be

evaluated by the expressions,
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Nom(a) = [ 9(){zv(0) + 2= [ @)+ 22O
+%2 31/”2@ 4;('/(39) "f/(_: + v (0) W) + 502';(65)(% Wj)}
+ nJ;z [24 Vm6(é) n Zsa(’/”ié) W, v éé) %)

3 (4) .
7. .00 g_ 2 L _9
+ 2B T Wa(WE + =) +0(n™) } d

= [0+ s (05 5w

o (V') 1502 . . , LW\ o2 /L 3 s

Denom(x / &(2)

~ 2
2 6 m 9 )+ 2z g ( 5 T Wa
0.3 lu (é) ”(é) I/I (é) ,C(B)
[z 5 + 2z 0( W, T%
o2, . 4 LY (6) 5(4) N v(9) £L® N v(6) E(g)W
" 6 n 30 n 3 n "
£4)

A gW (W + —)] +0(n?)} dz

ZZV 9 4,3 UV(é) £(3) ov ()W, Lo2v() LW )}

Therefore,
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D>
e

20 2 [v(@) £® 3 (O)W, 2 " 150 (8)o? LW
Rn(x):“_{y(g)Jr“_(V() 4 3v©) >+0_(V2( N Vé)a (W{f+—3n—)

nv(6) 2/n v 2 8 "' 3n
+ u(‘4)02 ('/:2(: +5€/(_:Wn> !
<[+ %W" ‘o <VV"((£) v i (W” * %m_l +0(n™*?)
_ ‘Lz{z/'(?) o2 (/;(3) L g? (?) Wﬂ) N 0_2(1/”'(?) N 1502 u’(?) ( : ﬁ)
nly@ 2v/n\vn () n \ 2u(f) 8 u(h) 3n

o2 o (v (0) 302_ , £ ot _s/2
B L T R B el B RO
2..'(A 4 (3) )
_aVO il £O L YOy,
nop(@) 22\ Vno T y()
4 [ "h 2 ' (h (4) 2 (5) (3)
+ 2 (2 6) | 1507 v (6) <W3 E—) +Z ('C—+5£—Wn>
n? \ 2v(9) 8 v(h) 3n 4 \ 2n Vn
6 (3) " 4 ' (h "h 2 (4)
_ S [ED g Oy ) 2 0) (V0) 30 < : ﬁ_)
n no v(f) n” () \ v(6) 4 3
6 ., ()
+ 2 Oy o512
4n 1/(0)
2 ! ~ 4 (3) 7 ~ 4 ! ~ ! I !
S o (50 00,) (0 S0r0
noy@) 2032\ /n 0 2n2\ p(0) v2(6)
(0 (4) (5) (3)
+ 14 (?)02 <2W13+’C_> +0.2 <L+2£_Wn>) +O(n_5/2).
v(0) n 4n Vn

This yields the desired approximation for 6,.
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Proof of Proposition 2. Note that

Covp(8,6,)
/ / 05, (z) exp(L(8, z))(8) df da
) ot (L& V() V(6 V(0w ()
- | [+ (ﬁ e W") 7’ A0 20)
+ (g)) (2W2 L; )+a2 <%—|—2-£\—/(%)Wn))}exp(£(9,x))7r(0) dfdz + O(n=5/?),

where all the £ above are actually £ (,z). Proceeding as in the derivation of R,

above, and assuming that 7 is also 5 times continuously differentiable and that 7(® is

bounded, we get,
Covp(0,0,)
o2 v (6) ot (L® v ()
0 + - ~ + + 2 ~ Wn
\/—/ / n y@) 2032\ V/n v(6)

(
v (9) VI(Q)V”(é) V() , 2, LW o (LO) LB
re iy e () v (T 2%}

5 {Hg_zzgg(s) ot L@ o5 LO g sﬁ(“)}

v (O (0 v (0 5 , LW o (LO £3)
+2n2( (((9))_ (Vz(é)()+ ,,{5)’0 <2W"+T>>+" (Ef”%w”)}
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~ 1
o2 O

30(971'(9) e
“2\T3

o3 "oa In 3 o+ d © (@
+ 557 (P (0) + 6 3(9) + 20 ((w(6) + b7 (0 ))3\/—

Or(6) LB 2B £®
() ( + Wp) + —
3 " b5n NLD 3n

3
69" 5 (5 AL L
+ z 249%(0)Wn(W +— ))+2n2(z

+ ZS%z(Wg(w(é) +6r' (B)) +

+ z7£(+Wff( 0) + br' (6)) + oW,

4. . w2 @
+z8”—9w(9)wﬁ(—"+7))}d )daz—I—O( —5/2)

5(4) oA Qﬂll(é) é oA £(5) ~ ,C(G)
+5- —— (7 (0) + 5 )+1—5‘(7T (9)*n—+7(9)6—n))

(4)

+ 1054—8é7r(é)W3(W3 + 2%))) dz + 0(n=%?)
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= 46 (0))W, + n(0))W,) + z4%zéw(é)(W2 + =)

([ 80 {om(0) + S eta@) + 60 + 25 wadn(a) + % (2P0

£® . o (8 2N y ~ L)
5 0+W()+W 07‘-() +U

4 )" ) (4) (5) 3)
c (V (A)— + ?)02<2W§+§—>>+0 <£—+2£—
v( n

NZD

Wn)}



D>

\/27r/exp(£(é,x)){ m(6) + 2—027r(0)

Bk

s bo? £ i (0 or" (9)
" 2

ot (2x®@) . (V@) VO @)\ s (B /A v (0)
+ + 07 (8 — — < +0r (6 — + 27 (0 —
2”2( 4 ©) v(6) v?(6) ( )V(G) ( )V(9)>
o o~ (v(@),13_, _L® £®) £3)
+W(9W(9) <y(é) (7 nt 5o )+ ( 5 5Wn%)
ae A {10502 £4) £(6) , £.(5) £3)
2 2 2 -~ -~ h2 ~ ~
+0 (9)( 96 Wi(We+2 )+ Tom ) 0°m (9)( +5Wn\/ﬁ)
an o~ 15 £® o £3) £
2 e 2, ~ 2, =
+ 0% (0) 5 (W2 + =) + b (6)5 W, \/_+97r O <Wn+ - >)dac
+ O(n_s/z)
0.2 0.4 0_4 6

6

g -5/2

where k(7) is some constant which depends on 7 but not on v.

Also, the final step involving integration (w.r.t. &) in the derivation of Covp(4,6,) is
done as follows. Consider a typical term that needs to be integrated. The integration is

of the form
70_ﬁv27r/exp([,(é, z))p1(0)p2 (E(Z)(é, z), L3 8, z), P8, z), 56, x))) dx

for some p; and p;. Note that £(§,z) = 37, h(z; — ) and L& (§,2) = X7, k) (z; — §),
2 <1 <5, and hence the integrand is a function of 0 and z — §1. We now assume that
there exists a one-one mapping of z with (21 — z,,...,Zn_1 — Zn, é) (This is clearly the

case if the likelihood equation, £’ (8, z) = 0, has a unique root for all z.) It can be checked
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that the Jacobian depends only on (z1; — Zpn,...,Zn_1 — Z,). Integrating with respect to

0 and then with respect to (1 — &n, - .., Zn_1 — ) yields,
%m / exp(L(6, ))p1()p2 (c<2>(é, z), L8, 2), LD (6, ), L5 (0, 2))) da
= [ 72 @), as(u) a4(w), a5(0) ( [m@ dé) a(w) du,

for some a;’s and where ¢ can be recognized as the marginal density of (X1—X,,..., Xn—1—
Xn).

Proof of Proposition 4.

op(8,6,) = [ (7) + —2a+8—V(7r)(3w2+l4) %(b—c+d+2f)
2—6(3w2+l4)a+ 4"—6k( )]
x [V(vr){V(w) + 2;(1 N g—4V(7r)(3w2 L) + -Z—j—(b —c+d+g)
+ EZ—(:awz Flat Al ka(m))] o
= |1+ - < +Z V(7r (3w2+l4)>

+— (b—c—l—d—i— 2f+5—2(3w2+l4) > %k(ﬂ)}]
5 [1 2V(7r {an <1+2a+ —V/( )(3w2+l4))

ot 502 o8
-+ ﬁ <b— c+d+g+ T(3w2 +l4)a> + Z;Z_kl(w)}

n gv_;”(;){‘f <1+2a—|— §4V( )(3w2+l4))

ot 502 o® 2 —5/2
+$(b—c—l—d—i—g—l——4—(3w2+l4)a)+mk1(7r)} -I—O(n /)

=1+ g—; (%2(31"2 +la) — V(lﬁ)) + n234(7r) (f - % * ﬁ(cw §)>

4 2

+ #2(@ (% %(3“’2 +14)(2 - %(31”2 +14)) + K(W)) +0(n™%/2).

Next, we give an outline of the derivation of expansion (3.1).
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Step 1. The marginal correlation p, (f(z|@), 7(0|z)) equals

Ep(f(z|0)n(6lz)) — Ep(f(zl0))Ep(n(0]z))

pp (f(z]6), 7(0]2)) =

Step 2. A derivation similar to that of Covp(6,4d,) yields,

EMNW»=//F@Wﬂ@MM

_ / / exp(2L(6, ©))(0)d9de

= [ [ S ewtate6.n - S0 - Zowa)
- \/ﬁ Xp ] 2 \/’T_Z n

3 (3) 4 (4)
X{1+ 6n \/ﬁ+24nz n + O™

2
A \ A -3/2
X {77(0) + \/T_Lmr (0) + A (0) + +O(n )} dz dz

://—J—exp(Q,C 0, z) — 2?) 1+0—2W z2+0—4W224+0(n_3/2)
vn VR

20°% S LO LL@) 3
—3/2
X{1+ 6nz \/_+24n n +0(n )}

2
3 4+ Lo (0) + T 221" ~3/2
X {7r(0) + \/T_lzw 0) + 2 T @) + +0(n )} dzdz

// exp(2£(8, z) ){1 + \}7_1 (zZUZWnW(é) + zom (é))

+ ( 5 W2 0) + 22 Wyr (8) + 23¥£\/%)7r(é) + 24——77r(é)
+ O(n-3/2)} dzdzx
%/ { ( (wz+l6)++z / "(u)du> +o(n_1)}
%{ + — <c50— wy + 16 ) +C4/7r”(u) du> +o(n—1)}
% {c3 + —05 ws + )—I—o(n_l)}
Step 3. The marginal density m(z) admits the expansion
m(z) = %exp(ﬁ(é,x)) 27r7r(0){1 + 2—fw

21

VI{Er(f2(2]0)) — ER(f(=10)HEp(x*(6]z)) — Ep(r(6]z))}

(4.1)



P (S T () o)

Proof. Proceeding as in Step 2,
ma(e) = [ F(alt)n(©)ds = [ exp(c(6,2)m(6)as

// exp(L( 0 ,Z) — %2(1 - %Wn))

o LB ot L™ 3
9 —3/2
{1+6nz NZD Tt Th +0(n )}

X {W(é) + %zw (0) + %2271' 9) + +O(n_3/2)} dz

[ o . 22 2.4 —3/2
—/ﬁexp(ﬁ(&x)— ){ 2\/_ W 2+ 0(n )}
3 (3) 4 (4)

3a3Wnﬂ,é o LB et LW o2 >

Step 4. Using Step 3 and arguing as in Step 2, we obtain
Ep(w(0|z)) = //w(0|x)f(:v|9)7r(6’)d9dm

_ //exp(2£7§19(,;))7r2(0)d9dx
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22 o? 203 LB 20% ,L® 3
= 1= = —3/2
// exp(21£(6,2) - 5-(1 ﬁWn)]){1+ T e 0l )}

y jg“ exp(L(0, z) {x(0) + 57—W (@) + - <”"(9) + 04_2 (% * 3W3> W(é)> }} )

9 2
A 0 A " 2 _"/h —3/2
L71'(9) + \/ﬁzw 0) + 2 T 0) ++0(n )] dzdx

:/exp(ﬁ(é,x)){ ()+W:W 7(0) + 22( ()+Z<—£:L_4)+3W§> w(é)>}—1

/d) { )+ L(20271’ (0) (0 )—I—a?'zZW T (é))

X

‘\'/_
Ly g 9, 0% a2 204 3,3 " AN (D
+ ;(U 2 (0))* + 0222 O)m(B) + =" Win* (0) + 20°2* W ()(0)
203 L0 20t L@ , ;
—3/2
—I—(6z\/ﬁ+24z n>7r(9))+0(n ) ¢ dzdz
_ o2 ot c3 cs  C3 1
= —o_— c3 + ?641(71’) + 55(102(65 —C4 — Z) + l4(€ - Z)) + O(TL ) (4.4)
where I(r) is the Fisher Information of =.
Step 5. Analogously,
Ep(f(z]0)n(0]z) = — | c1 + ¢ 2 ey + % (w (9@ —3e— Dy +1(B -2
P T o2\ T P an \? 2T/ Ty T
+ o(n_1)>, (4.5)
and so
Covp(f(z|0,n(8]z))
n o? 9 3 c c?
= ?(cl —c2) + (ca — czea)I () + > (wz(zce - 50— Zl — 2c3c5 + c3cq4 + 23)
2
Ce C1 C3Cs C3
(== —+— 1). :
aE-2-2 +4>)+o<> (46)
Step 6. Proceeding exactly as in Step 1, one obtains
2 n o -1
Ep(f (iL’l@)) = -0—_2— c1 + 8—nCe(9’wg + l4) + o(n ) . (47)
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Step 7. Algebra similar to that in Step 4 yields,

Ep(n?(9|z)) = 72(8|x) f(z|0)7(0) dodx = mgmcwd:c
m?(z)

2 0.2

= / m_21($_) (/ %exp@[ﬁ(é, T) ~ %(1 - %Wn)}

30% LB 3¢ , LW
1 3 4 —3/2
8 { bn - Vn 5an” n T Or™")

2 3
X {w(&) + inzw (0) + 72y 0) + —I—O(n_?’/z)] dzdz

Vn 2n
n o2 ot 9 C6 C1 -1
=sla+t 362?1(7&') + o 'LU2(ZC6 —3ca) + l4(—4— — 5) +o(n™") (4.8)

Step 8. By (4.2), (4.7),

Varp(f(al6)) = 2 (e — ) + o (wz(gcﬁ — caes) +1a(2 - 63—6‘*”-)> +o(l),  (4.9)
and by (4.4), (4.8),
Varp(n(6|z)) = %(c1 — ) + (3cz — 2cscq)I(7) (4.10)
+ %2 {wz(zc(; — 3¢y — 2c3e5 + 2c304 + %) + 14(64—6 - % — % + ;—g)} + o(1).

Step 9. Combining (4.6), (4.9), and (4.10), after several steps,

o? ot
pp(f(x]0), m(0l2)) =1~ mczf(ﬁ)) O] {crwa + (e1 — c6)la}
+o(n™1), (4.11)
which concludes the description.
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