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Theorem (Lebesgue-Radon-Nikodym). Let px and v be probability measures on (€, F).
Then there exists a set D € F with p(D) = 0 and an F-measurable function r: Q —
[0, +00) for which

v(E)=v(EN D)+ /E rdu, allE€F. (1)

We will obtain a Radon-Nikodym derivative r in terms of the solutions of a family of
maximization problems. The solutions will in fact be upper truncations of (a version of)

r, and D will be the intersection of the truncation sets.

Definition For bounded, measurable f: Q — [0, o], define

viH)= [2sav— [ fau (2)

For positive integers m, let V% = sup{V(f),0 < f < m}.
Lemma 1 For any m > 0, there exists fp, with 0 < f,, <m and V(fn,) = V,%.

Lemma 2 For fp, as in Lemma 1, let Cp, = {w: f(w) <m}, Dpy ={w: [fn(w)=m}.
Then
@ v(B) = [ fmdn, Eco,
E

(b) v(E) > /E fmdp = mu(E), E C Dp.

Lemma 3 For each positive integer m, let f,,,Cn,, and D,, be as in Lemma 2. Let I4 be

the indicator function of set A, and let

m—1 o0 oo
Am =Cn 0 (| G5, r=>Ia,fm, D= () Dm.
=1 m=1 m=1
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Then D and r are as in the LRN theorem.

Before proving the lemmas “from scratch”, it will be enlightening to see why they
follow from the LRN theorem. Let D and r be as in the theorem, and let 7 = r + co — Ip.

We can write

V(f) = /D 2dv+ [ (rf - ) 3)

Note that (2rf — f2) = r? — (r — f)%. So for each w € D¢, the second integrand in (3) is
strictly maximized, subject to 0 < f < m, by fm(w) = r(w) A m. The first integrand in
(3) is strictly maximized for each w € D, subject to 0 < f < m, by fn(w) = m. Thus,
fm =7FAmhas V(fn) =V, and it is easy to see that this maximizer is (u+ v)-essentially
unique. Lemmas 2 and 3 are easy consequences of the fact that each f,, is (¢ + v)-almost

everywhere equal to 7 A m.

Proof of Lemma 1: Suppose 0 < g; < mand V(g;) >V —efori=1,2. Let § = (g1+92)/2.
Then 1 1
Va2 V(@) = 5{Vie) + Vig)} + 5 [ (01 - 92)dn

N 1
>V, —e+ Z/(gl - g2)%dp,
s0 [(g1 — 92)%dp < 4e.
Now suppose that 0 < g, < m and V(gx) > V,* —4~®+D for k =1,2,.... The above

calculation shows [(gx — gx+1)2dp < 47%, and by the Lyapounov inequality (or by Jensen
(e ]

or Schwarz) we have S|gr — gr—1|dp < 27%. Then [ 3 |gk — gr+1|dp < 1, which implies
k=1

that g, converges p-almost surely to f,, = limsup g

Hence, gi(w) is p-almost surely a Cauchy sequence and therefore convergent to fy,.
The bounded convergence theorem implies [ gZdy — [ fZdu. By Fatou (applied to
m — gi)

/fmdu = /limsupgkdy > limsup/gkdl/.

Hence,

V(m) = [ 2y~ [ fdu > imsup V(ge) = Vi



Proof of Lemma 2 (a): If not, there exists E* C Cp, with v(E*) — [, fmdp # 0 and with

fm bounded away from 0 and m on E*. Then
V(fm+0la) = V(fn) = 2000(8°) = [ fndi} = ou(B"),

which contradicts the maximality of V(f,;). The proof of Lemma 2(b) is similar. O

Proof of Lemma 8: By Lemma 2(b), 1 > v(Dy,) > mu(Dy,), and so u(Dp) < m™L.
Consequently, (D) = p(NDy,) = 0. Lemma 2(a) implies v(E) = [ fmdu = [grdu for
E cC A,, C Cyp,. The sets A, partition UC,, = D¢, so for any E € F,

v(E)=v(END)+v(EnND°

V(END)+ > v(ENAp)
m=1
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