YET ANOTHER PROOF OF THE RADON-NIKODÝM THEOREM

by

Thomas Sellke Purdue University

Technical Report #00-09

Department of Statistics Purdue University West Lafayette, IN USA

December 2000 Revised March 2001

YET ANOTHER PROOF OF THE RADON-NIKODÝM THEOREM

by

Thomas Sellke

Theorem (Lebesgue-Radon-Nikodým). Let μ and ν be probability measures on (Ω, \mathcal{F}) . Then there exists a set $D \in \mathcal{F}$ with $\mu(D) = 0$ and an \mathcal{F} -measurable function $r: \Omega \to [0, +\infty)$ for which

$$\nu(E) = \nu(E \cap D) + \int_{E} r d\mu, \quad \text{all } E \in \mathcal{F}.$$
(1)

We will obtain a Radon-Nikodým derivative r in terms of the solutions of a family of maximization problems. The solutions will in fact be upper truncations of (a version of) r, and D will be the intersection of the truncation sets.

Definition For bounded, measurable $f: \Omega \to [0, \infty]$, define

$$V(f) = \int 2f d\nu - \int f^2 d\mu. \tag{2}$$

For positive integers m, let $V_m^* = \sup\{V(f), 0 \le f \le m\}$.

Lemma 1 For any m > 0, there exists f_m with $0 \le f_m \le m$ and $V(f_m) = V_m^*$.

Lemma 2 For f_m as in Lemma 1, let $C_m = \{\omega : f_m(\omega) < m\}, D_m = \{\omega : f_m(\omega) = m\}.$ Then

(a)
$$u(E) = \int_E f_m d\mu, \qquad \qquad E \subset C_m$$

(b)
$$\nu(E) \geq \int_{E} f_{m} d\mu = m\mu(E), \qquad E \subset D_{m}.$$

Lemma 3 For each positive integer m, let f_m , C_m , and D_m be as in Lemma 2. Let I_A be the indicator function of set A, and let

$$A_m = C_m \cap (\bigcup_{i=1}^{m-1} C_i)^c, \qquad r = \sum_{m=1}^{\infty} I_{A_m} f_m, \qquad D = \bigcap_{m=1}^{\infty} D_m.$$

Then D and r are as in the LRN theorem.

Before proving the lemmas "from scratch", it will be enlightening to see why they follow from the LRN theorem. Let D and r be as in the theorem, and let $\tilde{r} = r + \infty - I_D$. We can write

$$V(f) = \int_{D} 2f dv + \int_{D^{c}} (2rf - f^{2}) d\mu$$
 (3)

Note that $(2rf - f^2) = r^2 - (r - f)^2$. So for each $\omega \in D^c$, the second integrand in (3) is strictly maximized, subject to $0 \le f \le m$, by $f_m(\omega) = r(\omega) \land m$. The first integrand in (3) is strictly maximized for each $\omega \in D$, subject to $0 \le f \le m$, by $f_m(\omega) = m$. Thus, $f_m = \tilde{r} \land m$ has $V(f_m) = V_m^*$, and it is easy to see that this maximizer is $(\mu + \nu)$ -essentially unique. Lemmas 2 and 3 are easy consequences of the fact that each f_m is $(\mu + \nu)$ -almost everywhere equal to $\tilde{r} \land m$.

Proof of Lemma 1: Suppose $0 \le g_i \le m$ and $V(g_i) \ge V_m^* - \varepsilon$ for i = 1, 2. Let $\bar{g} = (g_1 + g_2)/2$. Then

$$V_m^* \ge V(\bar{g}) = \frac{1}{2} \{ V(g_1) + V(g_2) \} + \frac{1}{4} \int (g_1 - g_2)^2 d\mu$$

 $\ge V_m^* - \varepsilon + \frac{1}{4} \int (g_1 - g_2)^2 d\mu,$

so $\int (g_1 - g_2)^2 d\mu \le 4\varepsilon$.

Now suppose that $0 \le g_k \le m$ and $V(g_k) \ge V_m^* - 4^{-(k+1)}$ for $k = 1, 2, \ldots$ The above calculation shows $\int (g_k - g_{k+1})^2 d\mu \le 4^{-k}$, and by the Lyapounov inequality (or by Jensen or Schwarz) we have $S|g_k - g_{k-1}|d\mu \le 2^{-k}$. Then $\int \sum_{k=1}^{\infty} |g_k - g_{k+1}|d\mu \le 1$, which implies that g_k converges μ -almost surely to $f_m \triangleq \limsup g_k$

Hence, $g_k(\omega)$ is μ -almost surely a Cauchy sequence and therefore convergent to f_m . The bounded convergence theorem implies $\int g_k^2 d\mu \longrightarrow \int f_m^2 d\mu$. By Fatou (applied to $m-g_k$)

$$\int f_m d\nu = \int \limsup g_k d\nu \ge \limsup \int g_k d\nu.$$

Hence,

$$V(f_m) = \int 2f_m d
u - \int f_m^2 d\mu \geq \limsup V(g_k) = V_m^*.$$

Proof of Lemma 2 (a): If not, there exists $E^* \subset C_m$ with $\nu(E^*) - \int_{E^*} f_m d\mu \neq 0$ and with f_m bounded away from 0 and m on E^* . Then

$$V(f_m + \alpha I_{E^*}) - V(f_m) = 2\alpha \{\nu(E^*) - \int_{E^*} f_m d\mu\} - \alpha^2 \mu(E^*),$$

which contradicts the maximality of $V(f_m)$. The proof of Lemma 2(b) is similar.

Proof of Lemma 3: By Lemma 2(b), $1 \geq \nu(D_m) \geq m\mu(D_m)$, and so $\mu(D_m) \leq m^{-1}$. Consequently, $\mu(D) = \mu(\cap D_m) = 0$. Lemma 2(a) implies $\nu(E) = \int_E f_m d\mu = \int_E r d\mu$ for $E \subset A_m \subset C_m$. The sets A_m partition $\cup C_m = D^c$, so for any $E \in \mathcal{F}$,

$$\begin{split} \nu(E) &= \nu(E \cap D) + \nu(E \cap D^c) \\ &= \nu(E \cap D) + \sum_{m=1}^{\infty} \nu(E \cap A_m) \\ &= \nu(E \cap D) + \sum_{m=1}^{\infty} \int_{E \cap A_m} r d\mu \\ &= \nu(E \cap D) + \int_{E \cap D^c} r d\mu \\ &= \nu(E \cap D) + \int_{E} r d\mu. \end{split}$$

ACKNOWLEDGEMENT. This work was partially supported by NSF grant DMS-9971767.

Statistics Department Purdue University West Lafayette, IN 47907-1399 tsellke@stat.purdue.edu