MELLIN TRANSFORMS AND DENSITIES OF SUPREMA
OF BROWNIAN PROCESSES: WITH APPLICATIONS

by
Anirban DasGupta
Purdue University

Technical Report #02-08

Department of Statistics
Purdue University
West Lafayette, IN USA

October 2002




MELLIN TRANSFORMS AND DENSITIES OF SUPREMA
OF BROWNIAN PROCESSES : WITH APPLICATIONS

Anirban DasGupta
Purdue University, West Lafayette, IN

October 8, 2002

ABSTRACT

We present analytical formulae for the Mellin transforms and densities
of the suprema of the Brownian excursion, meander, and the reflected Brow-
nian bridge. We show that each supremum is determined by its moments. As
application, we give lower and upper bounds on the values of the Riemann
¢-function at odd and half-integer arguments, and a couple of surprising iden-
tities. We also give a probabilistic proof that Riemann’s £-function can be
computed at any real argument s by knowing its values only at the positive

integer arguments n =1,2,3, .. ..

Another applicé.tion is a sharp lower bound on the probability that a one
dimensional simple symmetric random walk does not return to the origin till
a given time 27 in terms of {(2n + 1),{(2n + 2), and ¢(2n + 3). The plot of
the density functions suggests that the suprema of the three processes satisfy
a chain stochastic monotonicity property, but we could not find an analytic

proof.




1 Introduction

In this article, we derive analytical formulae for the Mellin trans-
form E(W*®) and density function for the suprema of a number of Brownian
processes. The processes considered are the Brownian excursion, reflected
Brownian Bridge and the Brownian Meander. If W; denotes the standard
Brownian motion on [0,00), 73 the last zero before time ¢ = 1, and =
the first zero after time £ = 1, then the Brownian meander is the pro-
cess (1 — Tl)‘%IWTIH(l_n)[, and Brownian excursion is the process (r, —
71)“%|Wm+(1_t),1|. Durrett,Iglehaft and Miller(1977) show the convergence
(in weak topology) of suitable conditioned processes to the Brownian excur-
sion and the meander. They also derive the cdfs of the suprema in terms of
certain infinite series for each of these processes. In the companion paper,
Durrett and Iglehart(1977), the first moments of the suprema are derived as

part of a larger body of calculations.

In section 2, we give analytical formulas for the Mellin transforms of
each of the three suprema, including the case of inverse moments, as well as
formulas for their densities in terms of the Jacobi Theta function and its first
two derivatives. We show that each supremum is determined by its moment
sequence, and as an application we give a probabilistic proof that Riemann’s
£-function can be computed at any real argument s by knowing its values
only at the positive integer arguments n = 1,2, 3,.... As applications of the
Mellin transform formulae, we derive a variety of properties of the Riemann
zeta function {(s) = 52, =, which can be meromorphically defined in the
complex plane with a simple pole at s = 1. The results present a series of
inequalities on the values of the (-function at special arguments, as well as

some surprising identities. A different kind of application of our results is




a lower bound on the probability that the simple symmetric random walk
in one dimension does not return to the origin till time 2n. This bound
uses the values of the (-function at the three consecutive integer arguments
2n+1,2n+ 2,2n 4+ 3, and comparison shows that for small n, it is a better
approximation than the usual local limit theorem approximation of the true

probability.

The principal ingredients in our derivation of these results are schur ma-
jorization, the Gantmacher - Krein inequality, the functional equation of
Riemann’s ¢-function, and properties of moment matrices. To summarize,
perhaps the most satisfactory results are the thin window in which we are
able to place ((3) in equation (18), the two surprising identities in equations
(8) and (9), and the random walk inequality in equation (25), seen to be
more accurate than the local limit theorem approximation for small values
of n.

It would be interesting to have an analytical proof of our conjecture on
the chain stochastic monotonicity of the suprema of the reflected Brownian
bridge, the Brownian excursion and the meander, which is indicated by the

plot of their respective density functions in section 2.
2 Mellin Transform and Density Formulae

2.1 Mellin Transforms

Theorem 1 a. Let X;" denote the Brownian meander and Wy, = sup{X;" :
0<t<1}. Fors>0,

252)1(£
E(Wjy) = 200, (1)




b. Let X; denote the Brownian Bridge, starting at 0, and Wg = sup{|Xy| :
0<t<1}. Fors >0,

B(Wg) = L2 0rE) @

2% -1 !

c. Let X? denote the Brownian excursion and Wg = sup{X?:0 <t < 1}.
For s > 0,

E(Wg) = L2BEXE o o(2)s¢(s), where
&(s) denotes Riemann’s -function(see, e.g., Edwards(1974)). (3)

Proof. We will prove only part (a), as the technique is similar for all the
parts. From Theorem (6.1) in Durrett, Iglehart and Miller(1977),

P(Wy < 2) =1+25%,(~1)ke" 5

= P(Wiy > ) = 2™ — 2502, e~2" 4 gyoo -l

on a bit of algebra.

First consider the case s > 1. Using the above expression for P(W)ys > z),

_(2h41)2:2

22
E(Wy) = - [°z°d(2e™T — 2502, 7% 1252 e )
22 2 s 1) 22
=25 22N (e~ — TR, e 4 R, e )de
= sT($)(2% - 278((s) + 278 T ) (4),

on change of variable and term by term integration.

In (4), use now the identity 352, (1»_+ll')? = ((s)(2° — 1) — 2° (see, e.g.,

2
Gradshteyn and Ryzhik(2002)). Substitution of this identity and a little
more algebra yields the formula in part (a) of Theorem 1 for s > 1. But the




function on the rhs of equation (1) is analytically extendable to the entire
real axis, which would imply that in fact E(W3,) exists for all real values of s,
and in particular, for all s > 0, with the same expression as in (1) remaining

valid also for s € (0, 1].

Corollary 1. The first six moments of the suprema of the Brownian
meander, the Brownian excursion and the reflected Brownian bridge on [0,1]

are respectively :

Brownian meander  v/2wlog2, %= 9‘/_C(3), =, 23‘:’%— ¢(5), ZL-n5;

Brownian excursion \/_g—, 62, ‘;‘\/;C (3), 33, lf\/—‘/i ¢(5), = 126;

Reflected Brownian bridge \/— log2, T, > IC(3) s, IV (5) B,

? 2562

The numerical values in the respective cases are as follows :
Brownian meander 1.737,3.29,6.78,15.152,36.551,94.6‘13;
Brownian excursion 1.253,1.645,2.26,3.247,4.873,7.63;
Reflected Brownian bridge .869,.822,.847,.947,1.142,1.478.

Remark Notice that the moments of the suprema of the meander are sub-
stantially larger than those of the excursion. As noted by Durrett,Iglehart
and Miller(1977),the meander is likely to assume larger values than the ex-

cursion, and so this is consistent with our intuition.

From part a and part b of Theorem 1, one notices an interesting coin-
cidence. On inspection of E(W};) and E(W}), one notices that E(Wj,) =
*E(W3) for every s > 0. One would suspect from this relation that W), has

the same distribution as 2Wp. This is in fact true, and we will see it again




in the forms of their density functions in subsection 2.2.

Next, we will prove that each of Wy, Wg and WE is determined by its
moment sequence E(W™),n > 1. An application of this result to Riemann’s

&-function will be provided.

Theorem 2. Each of Wy, W and Wg is determined by its moment

sequence.

Proof. We will prove only the case of the meander; the same argu-
ment works for the other two cases. From equation (1), ¢, = E(W}) =
Mﬁiﬂ—“—@. Using the obvious fact that {(n) — 1 asn — oo, and Stirling’s

1 %
approximation on I'(%), it follows that c& = O(+/n), and hence limé- = 0

(and so < oo), which would imply that the distribution of W), is determined

by its moment sequence (see, e.g., Shiryayev(1984)).

Corollary 2. Riemann’s £-function can be computed at any real argu-

ment s by knowing only its values at n =1,2,3,....

Proof Since W is determined by its moments, the sequence {¢(n)}%2,,
by formula (3), will determine the distribution of Wg, and hence in particular
E(W}) for any real s (it is in fact true that E(W§) is finite for all real s,

and a formula for negative values of s will be provided in the next result).

Theorem 3. For s > 0,

a. B(W;f) = 250 (49)0(1 + s); (5)

b. B(W5*) = {22 p(be) (1 + ) Q)

¢. B(Wg*) = SHZL(4)¢(1 + ). 7
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Proof Again, we will only address the case of the meander. The formula

simply uses the functional equation of the {-function given as :

1+s

L()m™ 7 ¢(L+s) =T(=§)mi¢(~s)

in the expression (1) for E(Wj,), which is actually valid V real s. On
substituting for I'(—§){(~s) the alternative expression obtained from the
above functional equation, formula (5) follows on a little algebra. We prefer
formula (5) to (1) for negative values of s as it lets us avoid calculate the T'

and the ¢ function for negative reals.
Corollary 3. E(W;;!) = %,E(ng) = \/g, EWg') = __\/gE

The main reason for stating these values of the first inverse moment is

the following ’surprising’ identity.
Corollary 4. E(W3') = E(Wg). (8)

In fact, it is worth stating another surprising identity (identity (9) below)
that follows from the moment formula in Theorem 1 and the inverse moment

formula in Theorem 3. It is the assertion of the next corollary.
Corollary 5. a. E(W2)E(Wz2) = ¢(3); 9)
b. For every n > 1, E(WZ)E(Wgz>") = 2n(4n% —1)|Ba,|¢(2n+1),  (10)
where B,, denotes the 2nth Bernoulli number.
In particular, Vo > 1, E(WZ)E(W5%)/¢(2n + 1) is a rational number.

Proof part a is a consequence of the more general identity in part b. The

formula in part b follows from the two moment formulae in Theorem 1 and




Theorem 3, after substitution of %ﬁ&l for ¢(2n)(see, e.g., Gradshteyn and
Ryzhik(2002)). Part ¢ follows from the fact that Bs, is a rational number

for every n > 1.
We end this section with a stochastic domination result.

Proposition 1. Wy, £ 2Wp, and hence, Wy, > Wg, where > denotes

stochastically larger.

Proof Since Wy, Wp are each determined by their moment sequence by
Theorem 2, and E(W}) = 2"E(W3) by Theorem 1, it follows that W), =
2Wpg, and hence obviously Wy, >~ Wp.

Remark It will be seen in the plots of the density functions of Wj, and
W in the next section that the two densities cross only once, as one might

expect from the above stochastic dominance result.

2.2 Density Functions

We will next provide the density functions of the suprema in each of these
three cases. The formulae will permit us to plot the densities. Moreover, it
seems it would be good to have the density formulae for the sake of com-

pleteness.

Theorem 4 LetO(z) =1+232 e~™*% denote the Jacobi Theta func-
tion. Then the density functions of the supremum of the Brownian meander,

reflected Brownian bridge and the Brownian excursion are, respectively :

a. f(z) = 20'(Z) - z0'(2), (11)

b.f(z) = 26'(%) - £/ (%), (12)

™




¢ f(z) =20 (%) + 50" (). (13)
Proof. We will describe the proof only for the case of the Brownian

meander, and merely sketch it for the other two cases.

First recall that the cdf of the supremum of the meander is given by

2-71—].)212 )
2 .

F(z)=1+2(52, e _ 7% e~ (14)

2,2 _(2n—-1)2%x?

Using the identity 3%, e"" 2~ = E;"’zlye‘znzm2 +3 e € z_, and the
definition of the Jacobi Theta function, we will get, from (14),

o(z2)1  e(z2)-1
F(z) =1+2(852 _ G
=20(%) - 9(L). (15)
Differentiation of (15) yields the density function formula in (11).

As regards the other two cases, one can show, after calculation, that the

cdfs have, respectively, the following formulae in terms of the Jacobi Theta

function :
For the reflected bridge, F'(z) = 2@(%3) - @(gﬁi); (16)
For the excursion, F(z) = @(2‘1%2) + %@'(27”‘2). (17).

Differentiation of (16) and (17) will give the density formulae in (12) and
(13).

The formulae of Theorem 4 are used to plot the three densities below.
Note that the density of the supremum of the meander cuts that of the
excursion once from below. Thus, the plot would suggest that the supremum

of the meander is stochastically larger than that of the excursion. Durrett,

9




Iglehart and Miller(1977) comment on this from their plots of the cdfs, but an
analytical proof was not given. Note that similar density crossings are seen
in the other cases as well, and so stochastic dominance seems to be occuring
between all pairs. An analytical proof of the unimodality in all three cases

would also be interesting.

Conjecture Let Wy, Wg, W)y, respectively, denote the suprema of the
reflected Brownian bridge, Brownian excursion, and the Brownian meander.
Then Wp < Wg < W)y, where < denotes stochastically smaller. A ”proof
by picture” is that for each pair, one density function cuts the other one only
once and from below. If this were actually proved analytically, the stochastic

dominance will follow.

3 Inequalities on the Riemann (-function and

a Random Walk Probability

3.1 Inequalities on the Riemann (-function

The Mellin transform formulae of Theorem 1 are used in this section to
provide bounds, both lower and upper, on the values of the (-function at
odd and mid-integer arguments. Some of the bounds we give are quite sharp.
We also give a bound on the probability that a simple symmetric random
walk in one dimension does not return to the origin upto the 2nth time
by using the values of the (-function at the consecutive integer arguments

2n+1,2n 4+ 2,2n + 3. As we remarked before, analytical bounds on the (-

10




Density of the supremum of Reflected Brownian Bridge, Excursion, and the Meander, Left to Right
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function at odd and mid-integer arguments are usually interesting, because

not much is known about them. For example, it is not known if Cﬁ’,ﬁip is

rational or not, and it was proved as recently as 1979(Apery(1979)) that ¢(3)
is irrational. The results here use two main facts; one is a result on Schur-
convexity, and another the Gantmacher-Krein inequality on determinants of

moment matrices. For easy reference, we state them as lemmas.

Lemma 1 Let ¢(s) be the Mellin transform of a nonnegative random

variable. Let f(s1, 82, ..,8z) = [1i=; ¢(s;). Then fis a Schur-convex function.

Lemma 2 Let W be a nonnegative random variable and ¢; = E(W?),i =
0,1,2,..., assumed to be finite. For given integersn > 0,p > 1, let Mpi1xp41

denote the matrix with (¢, )th element equal to cyp4i4j—2. Then,
detM < detM[{1,2,...,k},{1,2,...,k}].
detM[{k +1,k+2,...,p+1},{k+1,k+2,...,p+1}],

where the notation detM[{1,2,...,k},{1,2,...,k}] means the submatrix

of elements in the rows 1,2,...,k and the columns 1,2,...,k of M.

The proofs of Lemma 1 and 2 can be seen in Marshall and Olkin(1979)
and Gantmacher(1959); see also Fischer(1908).

First we give two examples to illustrate the possible use of the general

inequalities we prove a little later.

Example 1 Consider the case of the Brownian excursion. From Corollary

e 2
1, the first three moments of the supremum are \/_5_, ¢(2) = &, and %%/———gc (3).
Hence, by the Schur-convexity result in Lemma 1, ¢(1)c(2)c(3) > ¢(2)?, which

3

on a small amount of algebra reduces to the bound ¢(3) > Z-. It may be

12




added that the numerical value of ((3) is very close to % Example 2

Consider again the case of the Brownian excursion. If welet p=2andn =20

in Lemma 2, then directly one gets ¢3 — 2¢cicacs + ¢3 > 0. Equivalently,

[4 +c
G > 2c1cz

3
Cz+02C4
—  2ci1c2

(by the inequality ¢ < cacy)

. cq§+c4
2

Now if we plug the values of ¢;, ¢3, ¢35 and ¢4 for the Brownian excursion

case, then on a little more algebra we get the upper bound ((3) < 3%

Actually, both bounds in Example 1 and 2 are strict; thus, the two ex-

amples together show the rather pleasing inequalities :

21-?0 P<(¥) < 270 (18)
Theorem 5 a. For any n > 2,

4= DVD R [T, T *
) < T 1)%5‘*2‘) ’ (19)

2

b. For any n > 1,

(2 —1)|B2n Ban 9|24" 1

here, By denotes the k-th Bernoulli number and the !! notation denotes,

as usual, the skipped factorial.

c. For any n > 1,

13




of[T7_, (KIC(2R))] % (2n~1)M
Cln+1) < Mmoot (21)

Proof We will prove only part b, as the idea of the proof is similar for

the other parts.

Towards this end, consider the function f of Lemma 1 and use the three

arguments 2n,2n + 1, 2n + 2. By the Schur-convexity of f,
f@n,2n+1,2n+2) > f3(2n+1)
= ConCont2 = C%n+1- (22)

Use now the formulae for the Mellin transform of the supremum of the

Brownian excursion in Theorem 1 to get :

2n(2n—1)(n—-1)1¢(2n)
271

Con =

_. {2n—1)|Bog|n®"

== (2n—-1)t (23)

on using the well known formula ((2n) = %ﬁﬁl;

2n(2n+1)I(n+ 1 )¢(2n+1

and, cont1 = e )2(:4,%2)(( S

— n(2n+ V7 (2n+1) (94)
22n—-2~ ) . &

on using the duplication formula for the I function; for both of these, see
Gradshteyn and Ryzhik(2001).

The inequality in part b will follow from substituting these expressions

for cap, Cont1 and Canqp into the inequality (22). We omit the algebra.

For proving part a, use the Schur-convexity inequality f(1,2,...,n) >
f(rE, 28, 28, and for part c, use the inequality f(2,4,...,2n) >

14




flr+1Ln+1,...,n+1).

We provide a few examples to illustrate the kinds of bounds we can get

from an application of Theorem 5.

Example 3 Use the upper bound in part b of Theorem 3 with n = 1,2
as examples. Then, on calculation, the following bounds are obtained; the

exact numerical values show that the analytical bounds are quite sharp.
2
¢(3) = 1.20206 < —\é—;w”” = 1.22931;
¢(5) = 1.03693 < J@w = 1.05904.

Example 4 This example gives a sharp analytical bound on the value of

the (-function at the half integer argument 3.

Using n = 2 in part a of Theorem 5, and usmg ¢(2) = ’%3 one would

h 1 1 d((5) =2.612 < 2 2.62
obtain the analytical bound ((3) 612 < 3\/§r(§)7“ 627.

The next example shows that combining two different inequalities given

in Theorem & can produce aesthethically nice and quite sharp bounds.

Example 5 If we let n = 4 in part a (i.e., equation (19)) of Theorem
5, then on doing the necessary algebra, we will get ((3) < —C(-3—) i,

11
270

stituting this upper bound for {(3), upon some more simplification, we get
the bound :

Eyesl

Now use the previously obtained bound ((3) < £=7° in equation (18). Sub-

¢ < %%—) 7% = 079973, hence giving the final bound:

¢(8) = 1.3415 < 277 = 1.3995.

15




3.2 Application to One Dimensional Random Walk

The final result is a lower bound on the probability that a simple symmetric
random walk in one dimension does not return to the origin till time 2n in
terms of the values of the (-function at the three consecutive integer argu-
ments 2n + 1,2n + 2,2n 4 3. The bound is of the correct asymptotic order,
as will be obvious from the result below. Further, the leading term in the
bound is the expression one gets from the usual local limit theorem, and the
rest is asymptotically O(1). We will see that for small n, the bound in the
next theorem produces a better approximation to the true probability than

does the local limit theorem. The bound is the following.

Theorem 6 Consider the simple symmetric random walk S, in one di-
mension, and let uo, denote the probability P(S; # 0,52 # 0,..., S, # 0).
Then,

1 /[Znx2 ¢(2n42)
Ugp > WAV \/((2n+1)((2n+3) . (25)
Proof Consider the function f of Lemma 1 and use the Schur-convexity
inequality f(2n+1,2n+2,2n+3) > f(2n+2,2n+2,2n+2) & Cony1Conss >

ci +2- Now use the formulae of ¢y, and cgn41 previously given in equations
(23) and (24), but keeping {(2n) as such, i.e., without writing it in terms of
the Bernoulli number B,,. Half page of algebra then produces the inequality

. (2n) 1 [2n43 ¢(2n+2) . —
Do > Tamy seis WACEREL but ug, = P(S1 # 0,52 #0,...,5, #

0) = ?(u%;ﬁ (see Feller(1966)), and hence the bound (25) is established.

Example 6 A small numerical table is given to illustrate the accuracy of
the bound (25).

16




Table 1

n Unp Bound (25) Local limit Thm
2 375 3675 3989

5 2461 2424 2523

8 1964 1942 . 1995

20 1254 1247 1262

50 0796 0794 0798

Thus, the local limit theorem approximation overestimates the true prob-
ability while the bound (25) of Theorem 6 is by construction an underesti-
mate, but for small n, the bound in (25) is a better approximation than the

local limit theorem.
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