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P. Del Moral, L. Miclo* F. Viens {

Abstract

Strong propagations of chaos estimates for interacting particle and
Feynman-Kac approximating models are studied. We use as a tool a
tensor product Feynman-I ac semi-group approach with respect to time
horizons and particle block sizes. Propagations of chaos estimates for
Boltzmann-Gibbs measures are derived from a precise moment analysis of
empirical measures and from an original transport equation relating sym-
metric statistic type and tensor product empirical measures. The analysis
presented in this article apply to study the asymptotic behavior of genetic
historical processes and their complete genealogical tree evolution yielding
what seems to be the first precise propagations of chaos estimates for this
type of path-particle models. Incidently this can be also be considered as
an extension of the traditional asymptotic theory of g-symmetric statistics
to interacting random sequences.

1 Introduction

1.1 Description of the models

Let P(E) be the set of all probability measure on a measurable space
(E, £). We consider a collection of measurable spaces (En, £n)n>0 and for
any 0 <p < nweset Epn = Ep X Epp1... x B and E@n] = Ept1,n]-
‘We shall use the abbreviation p(f) for the integral of a function f(z) with
respect to a measure p and pQ(dy) = [ p(dz)Q(z,dy) for the integral of
measure . with respect to some bounded integral operator ). We shall
also use the letter ¢ to denote any universal constant whose values may
vary from line to line but they do not depend on the time parameter n
nor on the coefficients of the models.

We denote by G : E. — (0,00) a collection of non negative and &,-
measurable functions such that sup, . ¢z (Ga(2n)/Gn(yn)) < co. Also
let no € P(Fo) and My, (zn—_1,dz,) be a sequence of Markov transitions
from E,_; into E,, n > 1. We associate to the triplet (10, Gn, My) the
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Feynman-Kac measures 1, € P(E,) defined for any f. € By(E,) and
n € N by the formulae

n—1

M (fn) = ¥a(fo) /1 (1) with ya(fa) = Ene (fa(Xa) [] Go(Xp)) (1)
p=0

where [E,, stands for the expectation with respect to the distribution of
an En-valued Markov chain X, with transitions M,. We recall that the
distribution flow 7, satisfies the non linear equation

Nat1 = @Pny1(nn)

where ®,41 : P(Fn) = P(En+1) is the one step mapping defined for any
n € P(En) by
1

@np1(n) = Un(N)Mur1 with T, (n)(dzn) = G Gn(zn) n(dzn)
(2)

The genetic N-particle model associated to this distribution flow model
is defined as non homogeneous and EY-valued Markov chains

@M =TI BEY, 7Y = (F )nen, (Ea)nen, Piy)

n>0

The initial configuration &o consists in N independent and identically
distributed random variables with common law 7o and its elementary
transitions from EL._, into E} are given in a symbolic integral form by

; N 1 N
]P’rx) (én €dzn | €n—1) = H &, <7\‘/: 2551“_1) (dzh) (3)
p=1 i=1

where dz, = dzl x ... x z¥ is an infinitesimal neighborhood of a point
Zn = (z1,...,2Y) € EY. Using (2) we readily check that this particle
algorithm is a simple genetic model with a two step selection/mutation
transition. This class of evolutionary particle models can be interpreted as
an interacting jump or as a birth and death process. Suppose the Markov
chain X, in (1) is the path-historical process

Xﬂ:(X(Ih 7X;1)€En=Efo,n](=E(l)X...XE;L)

associated to an auxiliary E;-Markov chain X,. Also suppose that the
potential functions G, (zy,. .. ,z5) = G, (z;,) only depend of the terminal
value of path z, = (z0,... ,75). In this situation the N-path particle algo-
rithm €, = (£ n)o<p<n € Ejo ) Tepresents the genealogical tree evolution
of the genetic approximating model &, of the Feynman-Kac measures 7,
defined as in (1) by replacing the quantities (En, Xn,Gr) by (Ep, X, Gb)
(cf.[2]). In this interpretation the path-particle model

fomp = (€660, ,€L) € By x Ejgqy... X Elo.n

contains all historical informations on mutations and on evolution branches
stopped by the selection mechanism. In this sense it represents the com-
plete genealogical tree evolution of the genetic population model &;,.



During the last decade the convergence of the particle empirical mea-
sures 78 = % Zﬁ__l 0¢i as N tends to infinity towards the Feynman-Kac
distribution 7, has been the subject of many research articles. These
genetic models can be thought in many different ways depending on the
Feynman-Kac applications model areas we consider. There exists an ex-
tensive literature on the limiting behavior of these models and their appli-
cations in the spectral analysis of Schrédinger-Feynman-Kac semi-groups
and in the development of new interacting Metropolis type models. We
refer the reader to the survey paper [1] (and references therein) on theo-
retical aspects and advanced signal processing applications.

Strong propagations of chaos estimates measure the adequation of the law
of the particles with the desired limiting distribution. They also allows
to quantify the independence between the particles. Loosely speaking the
initial configuration of a particle model consists in independent particles
in a "complete chaos”. Then they evolve and interact one each other.
When the size of the system increases finite blocks consists in asymptoti-
cally independent particles. The study of propagations of chaos properties
of discrete time genetic models has been started in [2]. In the latter most
of the estimates depend on the regularity of the mutation transition. As
a result they cannot be used to analyze propagations of chaos properties
of complete genealogical tree models. The main object of this article is
to study this important question combining an original tensor product
semi-group technique with sharp estimations on empirical processes and
Boltzmann-Gibbs transformations.

1.2 Outline of results

Let (¢, N) be a pair of integers with 1 < ¢ < N. Let (N}? be the
set of all mappings from (¢) = {1,...,¢} into (N) = {1,...,N} and
(g, N) C (N)(@ the subset of all (N), = N!/(N —q)! one to one mappings.
By P,(,J(;I,’,‘f) we denote the distribution of the first g-path particles

Pl = Law((€fo,m)1<i<q) € P(Ef )

with Efy = (Ejo,n))? and & = (&,...,65) € Epn. We also de-
note by Pfg)’[?] = Law((€})1<i<q) € P(E2) their n-th time marginals.
To every path empirical measure I'Y = = vazl 55{0 : € P(Ejo,n)) there
corresponds a pair of g-tensor and symmetric statistic type empirical dis-
tributions

1
TN = = 8 ety ale)
n Na ae%m o) Ej0rm))
1
ries = 8 o « 4
(=) 2 S @

? aelq,N)

In contrast to traditional g-symmetric statistics the N-random paths [io,n],
1 <4 < N are non independent but they interact with each other ac-
cording to mutation and genetic selection rules. In this paper the limit



behavior of these interacting g-tensor measures is investigated. This leads
not only to propagations of chaos results for genetic and genealogical tree
models but also to an extension of the classical asymptotic theory of ¢-
symmetric statistics to interacting random sequences.

The first central observation is that these two types of empirical mea-
sures are connected by a Markov transport equation of the following form
(V)q Nq

(Frjy)@q = (ny)@qR%) where RX%) === Id+ (1 - (N‘l

- ) R

and RE\‘,’) a Markov transition on Efﬁ,n]' We will give the proof of this

result with a precise and explicit description of Rﬁ\‘,’) in the subsection 4.3
of the Appendix. One easy consequence of this formula is that

1T = @)% < A= (N)g/NY) < (@=1*/N  (5)

By symmetry arguments we observe that for any F € Bb(EfO n)) We have

PO (F) = BN (F((Eo,n)1<i<q)) = B (TY)®(F))

As mentioned in the introduction to analyze precisely the limiting behav-
ior of the path-space distributions (I'Y )®? we develop an original approach
based on ¢-tensor product and path space Feynman-Kac semi-groups.
This strategy enters in a natural way the dynamical structure of inter-
actions in the study of the propagations of chaos properties. It allows to
use the stability properties of the limiting system to derive precise and
uniform estimates with respect to the time parameter. The systematic in-
vestigation of Feynman-Kac particle models using semi-group techniques
has been initiated by two of the authors in [1] and to derive central limit
theorems and empirical processes convergence results.

In section 2 we extend this technique to tensor product semi-groups with
respect to particle block sizes and time horizons. We express precise strong
propagations of chaos estimates in terms of the Dobrushin’s ergodic co-
efficient associated to a Markovian and Feynman-Kac type transition on
a product space. For a precise definition of the Dobrushin’s ergodic co-
efficient and its applications in the context of Feynman-Kac and particle
models we refer the reader to the articles [1] and references therein.

To describe precisely our first main result we let @, n, respectively Q,(,‘f,)l,
be the linear semi-group associated to the un-normalized Feynman-Kac
distributions 7, and respectively v®9. Notice that

Qp:n(fn) = Gp,n Pp,n(fn)

with the potential function Gp,, and the Markov transition Py,

Gpn = Qpn(l) and Ppu(fn) = Qpa(fn)/Qpn(1)

Let (Géf,’,)l, P;S?,%) be the corresponding pair potential and Markov transi-
tion associated to the semi-group Qz(f%.

Our first main result is



Theorem 1.1 For any N > ¢ > 1 we have

2
(N.q) ®q a9 (9) 2
WPy =12 Ml < e 55 1+§ BIPSY [+ epn (26°/N)])  (6)
where B(P;S?,z) € [0,1] represents the Dobrushin ergodic coefficient asso-
ciated to the Markov transition P,S?,E and epn : (0,00) = (0,00), is the
collection of mappings defined by

epn(u) = (rpn —1)*(L+ (rpn — 1) V) exp((rp,n —1)* u) (7)
Tpn = . ?JuléE (Gp,n(mp)/Gp,n(yp))

The estimate (6) holds true for a fairly general and abstract class of
Feynman-Kac models. It can be used to analyze the strong propaga-
tions of chaos properties of genetic particle systems as well as those of the
corresponding genealogical tree models. To illustrate another impact of
this result in practice we present hereafter two easily derived consequences
of theorem 1.1. For simplicity we further assume that the Feynman-Kac
model (1) is time homogeneous (E,, Gn, M,) = (E, G, M) and the follow-
ing regularity condition is met for any z,y € E and for some m > 1 and
e(G),e(M) € (0,1)

(G,M) :  Glx)2eG) Gly) and M™(z,.) > (M) M™(y, .)

In this situation combining theorem 1.1 with some well known results
on the stability of Feynman-Kac semi-group we will prove the following
increasing propagations of chaos properties: let n(N) and ¢(N), N > 1,
be respectively a non decreasing sequence of time horizons and particle
block sizes such that limy_yco n{VN)¢*(IV)/N = 0. In this situation we
have
T-som s PO — 72000y < o /(™ (@)e(b))?
(N)n(N)" 710.[n(¥)] n(N) 1Y —=

Theorem 1.1 does not apply to study the asymptotic behavior of the com-
plete N-genealogical particle model €[ n}.

Our second main result is
Theorem 1.2 For any n,q,N > 1 such that (n+ 1)g < N we have

2 2(g(n+1
IBD — (0 © .. © )l < ¢ Ln+1)° [1 +en2ARFIyy
with the mapping en(u) defined as in (7) by replacing the constants rpn
by Tn =SUpP,<, Tp,n-
This second estimate readily implies the following increasing propagations
of chaos property: If we have imy_,00 ¢*(N)/N = 0 then for any n € N

— N Noa(N @q(N
llmNammipgo,g( ))—(7]0®...®7]n) q )“tUSC’(n)



with C(n) < ¢ (n+1)3(1 + (r» — 1)%). In the case of time homogeneous
models satisfying condition (G, M) for some m > 1 and e(G), (M) € (0,1)
then we shall also prove that

C(n) < ¢ (n+1)*/(€™(P)e(M))?

In section 3 we measure the propagations of chaos properties of Boltzmann-
Gibbs transformations. This section contains several central key esti-
mates including a sharp complement of Burkholder’s type inequality for
sequences of independent and identically distributed random variables.
The complete proofs of theorem 1.1 and theorem 1.2 are housed in sec-
tion 4.

2 Feynman-Kac semi-groups

We let Qp,n and ®,,, p < n, be the semi-groups associated respectively
to the Feynman-Kac distribution flows -y, and 7, defined in (1),

Qp,n = Qp+1 e Qn——lQn and q)p,n = @n o} ‘I’n_l 0...0 (I’p.:,.l

with Qn(2n—1,dZs) = Gro1(Tn—1)Mn(xn-1,dx,). We use the convention
Qnn = Id and ®,,, = Id for p = n. To analyze propagations of chaos
properties in path space it is convenient to consider the Feynman-Kac
tensor product distributions on path space

Tn=100®...® M € P(Ejo.n))
By definition of &, , we have for any p < n
Lo =00 (Tp)

with the (non linear) semi-group Qp,» : P(Ejo,p) — P(Ejo,n)) defined
for any pu € P(E ) by

Qpn(p) = 1@ Ppp+1(tp) ® Pppr2(tp) @ .. @ Ppon(pp) 9

In the above display p, € P(E,) stands for the p-th time marginal of u
defined for any ¢, € By(E,) by

pe(pp) = p(l®... ® 1 ®pp)

p—times

Again we use the convention Q. , = Id for p = n. To check that Q,, is
a well defined semi-group we observe that for any p € P(Ej ) we have

Qpp+1(1) = p ® Bppt1(ip)
It follows that
Qpt1,0(Qp,p+1 (1))

= Qpt1,n (8 ® Pp,p+1(1tp))
=@ Pppt1(kp) © Ppr1,p+2(Lppt1(1p) ® - @ i1, (Bppt1(ip))

= p® Pppt1(tp) ® Pppt2(tp) @ - ® Ppn(pp) = Qp,n (1)



In the forthcoming development of this section we fix a positive integer
¢ 2 1 and we denote by ¥ the g-tensor product Feynman-Xac measures
defined by

TP =n"0...0nd" e P(BY,) with EJ =Efx. . xEl
Notice that
I =T 0 (01)™
with the mapping ©¢ : E[(g’)n] — Ef, ,,; defined by

OL[(z6)1gi<q, - - » (Th)1<i<g] = (@b, ... ,2h)1<i<q (10)

The next two subsections are devoted respectively to the study of the
dynamical structure of the tensor product distributions n®? and o,

2.1 Marginal models

We observe that 27 can alternatively be defined for any f € By(Ex) by
the Feynman-Kac formulae

n—1
() =R ()20 with A2(f) =B, (F(50) T 67 0gm))
p=0
where
. ]E;‘g o (+) represents the integration with respect to the law P(‘gq of ¢
0

Mo
independent copies

X0 = (x50, x 2, x0) e Bl

of a Markov chain with initial distribution n € P(Ep) and Markov
transitions M,. In other words X is a non homogeneous and
E3-valued Markov chain with transitions

q
M.,(lq)((w,ll_l,‘“ ,$Z_1)7d(w'}n" . 72;31.)) = ]:[lw"n(x:’t—-lydx:’l)

=1

e GO . E? — (0,00), n > 0, is the sequence of g-temsor product
potential functions defined for any (zl,... ,z%) € EZ by

q
GOk, ,a8) = [[ Gnlsh)
i=1

This rather simple representation indicates that the sequence of distribu-
tion flows 27 and 429, ¢ > 1, have exactly the same semi-group structure.
Let Q%) and respectively @) be the bounded integral operator from
EZ into E} ., and the mapping from P(E}) into P(EZ ;) defined for any

(n, ) € P(ER) x By(E7 1) by

QYL (f) =GP MB,(f) and @) (n) = ¥ ()M,



with the Boltzmann-Gibbs transformations % on P(EL) given by

1
2(G)

T () (dzn) = G (zn) n(dza)

By the Markov property and the multiplicative form of the Feynman-
Kac models we prove that the distribution flows v27 and 29 satisfy the
recursions

'Y?qq-l = ’Y;?nglqjq and 777?-?-1 = q’flqjq(n
We let Q,‘,‘f,)l and &%), p < n, be the semi-groups associated respectively
t0 v27 and 7®?. That is we have that

=)

0=09,...02,Q% and 2§ =20 08 0... 00,

As usunally we use the convention ngzl = Id and @51‘{% = Id for p = n.
Our final objective is to provide a Boltzmann-Gibbs representation of the
semi-group ®%),. To this end we let G7), E3 — (0,00) and P9 be
respectively the potential function and the Markov transition from Ef
into EY defined for any f € By(EZ) by the formulae

Gy =Qa(l) and FR(fa) = QEA(f2)/Q (1)
If we set Gp.n = Qp,n(1) then we find that for any (z3,... ,22) € EZ
C¥l(@p,. . 28) = Qpa()(z3) - Qpn(1)(x})
= Gpul(zp)...Gpn(zd)

From previous considerations we readily see that for any p € P(E?) we
have

34, (1) = T (W) P (11)

with the Boltzmann-Gibbs transformations \I’g‘% on P(E{) associated to
the potential function Gﬁ% and defined for any (u, f) € P(E}) x By(Ej])
by W) (£) = w(GEh £)/u(GER).

2.2 Path space models

To describe the dynamical structure of the semi-groups 5, introduced
in (9) we first observe that for n € P(E,) and F € By(E(p, n)) we have

(Pp.p+1(17) @ Ppp42(n) ® ... @ Tpn(m)) (F)

n® "2 (T n(F))

n®=2)(Tp,a (1))

= [H ;Q——ﬁ] MQppt1® ... @ NQpn) (F) =
k=1 [

with the bounded operator Tp,» from ES™ " into E(p,n) defined for any
(ak,... .z e BP by

n—p
TP,n(F)(len ey x;}n—p)) = /E‘ H Qp,p-i—k(zﬁ) dxp+k) F($P+17 e ,:Un)

(psn} k=1



Also observe that the mapping Tp (1) coincide with the (n — g)-tensor
product potential function

n-p
Ton (W@, 25 ™™) = ] Qppsr(1)(a})
k=1

In other words in terms of the potential functions Gp,» = Qp,n(1) we have
that

Tp,0(1) = Gppt1 ® Gppr2®...®Gpn (12)
In these notations (9) can be rewritten for any u € P(E[o ;) as follows

Ng(n—p)Tp,n(-)

— =u® (Bp,n[ﬂz(?(n—p)]Up,n)
N?( p)Tp,n(l)

Qpn()(-) =p@

with
¢ the p-th time marginal distribution u, € P(E,) of u € P(Ejo )

e the Boltzmann-Gibbs transformation B,, on P(ES ?) and the
Markov transition Up,, from ES* ™) into Ep, ) defined for any pair
(v, f) € (P(B"™P) x By(By" ")) and F € By(B(pn)) by

_ V(Tp,n(l) f) _ Tp,n(F)
BP:”(V)(f) - I/(Tp,n(l)) and UP;"(F) - Tp,n(l)

This updating-prediction type representation of the semi-group Q. pro-
vides a precise description of the dependence of Q, »(r) with respect to
the measure v. Next we present a formula which emphasize the role of the
one step mappings ®, in the dynamical structure of these transformations.

Lemma 2.1 For anyp > 1 and n € P(Ep_1) we have
Bpo1,[1®" P O NUp 1,0 = @5 () @ (Bp,n[@p (1) |Up,n)

Proof:
By definition of the operator Ty, we have

n®(n—p+1)Tp—l,n
= [1Qp-1,5] ® MQp-1,p+1] ® - .. ® [NQp—-1,n]
= (Qp) @ [(NQp)Qpp+1]®...® [(1Q2)Qp.n]

= (nQp) ® [(WQP)®(n_p)Tp,n]

This implies that

NPT, 1a(1) = 0Qu(1) X [(0Q)° " P Ty n(1)]



On the other hand, for any ¢1 € By(E,) and @2 € By(E(p,n]) we have
@5 (n)(1) = 1Qs(1)/1Qp(1) and

(UQP)®(n_p)Tp,n(SO2) — q’p(ﬂ)mn_p)Tp,n(‘P?)
(nQp)®=P)Ty 1, (1) @, (n)@=PITp (1)

= Bpn(®p (77)®(n—p))UP»n (2)

From these observations we find that for any f € By(Ep x E(,n)

®(n=p+1)
@(n—p+1) _ n Tp1,n(f)
~tal Wp-1n = n®@=p+DT, 1 (1)

= 2(n) @ [Byn(@o(m) " P Up,a]

This ends the proof of the lemma. n

From the Feynman-Kac representation of g-tensor marginal distributions
given in section 2.1 we see that the semi-group structure of the g-tensor
product measures on path space

F(Q) — 77®q R..® 77®q c P(E[(g)n )

can be studied using the same lines of arguments as above by replacing
the pair semi-groups (Qp,n,®p,n) by the g-tensor product semi-groups
(Q%9),, ®%)). We will use the superscript (.)(® to define the corresponding
mathematical quantities. To be more precise let Q,ﬁf,)l, 0 <p < n, be the
(non linear) semi-group associated to the distributions flow I and given
by

I = (i)

From the preceding construction we check pr‘fz, can be described for any

u € P(E§ x ... E}) by the following formula
U () = p® B (g P Use)

where
o u2"P ¢ p(EL™"P)) is the (n — p)-tensor product distribution of
the p-th time marginal pu, € P(E]) of p.

(q) Eq(n p)

is the Markov transition from into

q
E(pn

and defined for any F' € By(E7,; X ... x Ef) by

=El,,x...xE]

USO(F) = TS (F)/ T8 (1)
with

TO(F)(zd, ... ,al™P)

yzal

L q) H Q(q;.;.k(wi‘” d$p+k) F((Ep+1, .. ,:L‘n)

] k=1

10



e BY9) is the Boltzmann-Gibbs transformation on P(EZ" ") defined
for any pair (v, f) € (P(EL" 7)) x By(EZ™"P))) by

B W)(f) = (T Q) £)/v(T1))

As in (12) we notice that the non homogeneous potential functions
T8 (1) are given by

TRW = GhueGh.e. oG
In other words in terms of the potential functions Gy, for any
(@py. .., 207 e BX*™P) with 2k = (&M, ... 2"9) € BY

for each 1 < k < (n — p) we have

(n—p) ¢

- k,i

T W) (pr- -2y ) = T T Goprrlzs)
k=1 i=1

We end this section with the version of lemma 2.1 in the context of g-
tensor product semi-groups.

Lemma 2.2 For any q,p > 1 and n € P(E]_;) we have

B2y o UL, L = 87 () © (B(ag” (n)° T PI0RR)

3 Asymptotic properties of Boltzmann-
Gibbs distributions

Let 1 be a probability measure on a given measurable state space (E, £).
During the further development of this section we fix an integer N > 1
and we denote by

1 N
m(X) - 'N; E 6X"
=1

the N-empirical measure associated to a collection of independent and
identically distributed random variables X = (X*);>1, with common law
p. We denote by m(X)®? and m(X)®?, ¢ < N, the random distributions
on EY defined by

m(X)®q = N_q Z J(Xa(l),_._,xa(q))
a€(NY{D
. 1
m(X)® = N D Sxem,. xat@)
(M S

Let g = (g:)i>1 be a collection of £-measurable and non negative functions
on E such that p(g:) € (0, 00), for each ¢ > 1. For any fixed integer ¢ > 1
we denote by ¢'? the g-tensor product function on E? defined by

P =g®...@g,:(z",...,2%) € BY — g1(z1) ... go(z9) € (0, 0)

11



In these notations we notice that
q
(X)®q (q) H,m(X) ¢:) and M®q(g(Q) Hm (X)(g:)
g=1

It is also convenient to introduce the mapping
eu,g 1 U € (0,00) = epg(u) € (0,00)
defined by

eug(u) = osc,(9)(1 + oscu(g) v/u) exp (oscp(g) u)

with osc,{g) = sup;-, 0sc(gi/p(g:)). When the potential functions g are
chosen such that u(g;) = 1 for any i > 1 we simplify notations and we
write ey instead of e,,, to emphasize that the function does not depend
on u. We associate to the pair (g, ¢) the Boltzmann-Gibbs transformation
T . P(EY) — P(EY) defined for any (1, f) € P(E?) x By(E9) by the
formula

TO@)(f) = (g 1) /()

The main object of this section is to analyze the asymptotic properties
of the random distributions ¥(®(m(X)®?) as the pair parameter (g, N)
tends to infinity. Our main result is

Theorem 3.1 Let (g:)i>1 be a collection of measurable functions g; with
uniformly bounded oscillations osc(g) = sup;s;0sc(gi) < oo. For any
N2>g>1and f € By(E?) with osc(f) <1 we have

B (0P — OGPl < e & tten ()] 08)

and for any n > 1

N N
(14)

B(E (m(0°)(1) - OGN < e 2 B e, (200

Theorem 3.1 will be proved in the end of the section. In order to prepare
for its proof we first present three technical lemmas of separate interest.

Lemma 3.1 For any 1 < ¢ < N there exists a Markov transition R%)
from E7 into itself such that for any E-valued sequence x = (z')i>1 we
have

N
m(2)®% = m(z)®RY  with RO = e )q Id+(1- (N) R
and where
1
m(l’)®q = W Z 5(101(1),.”,1&(‘1))
ag(NY D
1
m@)* = G 2 e, s
an(QrN>
12



Lemma 3.2 The following assertions are satisfied for any £-measurable
function h such that p(h) = 0.

o If h has finite oscillations osc{h) < co then for any n > 1 we have
N"E(m(X)(R)*™) < (2n)n 27" osc(h)*" (15)

@2n-1)n 27 (=12 gge(p)3nm D)

n—1/2 ’ 2n—1
NV B(fm(X)() ) —n

IN

o If we have u(h®™) < oo for some n > 1 then

N™ E(m(X)(h)*™) < (2n)n 27 u(h®")

N2 E(jm(X)(W ) < ——QZ:?/'; e

Lemma 3.3 Let (gi)i>1 be a collection of measurable functions g; with
uniformly bounded oscillations osc(g) = sup;»; 0sc(gi) < co and such that
u{gi) =1 for any i > 1. Then, for any n > 1 we have

2 2
®1(glay _q)» < gn-1 (n0)7 (ng)”
| B (0% () -1 ) | < 227t B e, (B4 (16)
At this stage it is convenient to pause for a while and to make a couple
of remarks:

The first lemma 3.1 connects the g-tensor product measures m(X)®? with
the g-symmetric statistic type distributions m(X)®?. This connection is
expressed in terms of an abstract Markov transport equation. Its proof
relies on purely combinatorial techniques and it is housed in the subsec-
tion 4.3 of the Appendix. Lemma 3.2 and lemma 3.3 provide some precise
L,-type mean error estimates. Their proofs rely on symmetrization and
combinatorial techniques and they are presented in subsections 4.1 and 4.2
of the Appendix. There is a number of significant and related estimates
in the literature on martingales which apply to our context. For instance
using Burkholder’s inequality (cf. for instance [3]) we would find that

N™ E(m(X)(R)*™) < (18Ba2n)™ osc(h)™
with (2n) < B2, = 2n+/n/(n — 1/2) < v/2 (2n). This would lead to the

estimate
N™ E(m(X)(R)*™) < 2™ 18%" (2n)*™ osc(h)*™

Next inequality gives a quick and simple way to measure the improvements
obtained in lemma 3.2

27" (2n)n 1 = P 1
= 1- P2y~
2 182n (2p)?2n 647 (2n)7 1:7[:]; ( 2n) = 64 (2n)”

On the other hand, by the central limit theorem, we have the following
asymptotic result

(VE m(OM/Ill]) "~ W

13



where W is a centered and Gaussian random variable with E(W?) = 1 and

the superscript -2, stands for the convergence in distribution as N tends
to infinity. In this connection if we have p(h®™) < oo for some integer
n > 1 then it is well known that

Jim N E (O] = BF?") = (2n), 27"

This asymptotic result already indicates that in this sense the estimates
presented in lemma 3.2 are sharp. As we already mentioned these es-
timates will be used in the further development of section 4 to derive
increasing propagations of chaos properties for Feynman-Kac interacting
particle approximating models. In this context the use of Burkholder’s
type estimates will lead to different conclusions and much coarse proper-
ties. The proof of theorem 3.1 will be easily established using the following

Proposition 3.1 Let (gi)i>1 be a collection of measurable functions g;
with uniformly bounded oscillations osc(g) = sup;~, 0sc(g:) < co and such
that u(g:) =1 for any i > 1. Foranyn>1, N> q>1 and f € By(E?)
with ||fl] €1 and osc(f) <1 we have

\&Qq q q n n+1 (TL )2 (n )2
Bm (0% (69) - (0@ pI < 2 PO e, (G0,

2N
(17)
Proof:
From proposition 4.1 we have the Markovian transport equation
N N ~
m(X)® = m(X)*RY with R = (N—zq Id+(1— (N—}) R

for some Markov kernel R§3> on E? and for any ¢ < N. Since
(R§3) - Jd) = (1— (N),/NY) (Rﬁ’ - Id)
and recalling that E(m(X)®? (¢@ f)) = u®9(9@ f) we readily prove that
E(m(X)®* (9 ) ~p® (¢ 0f) = E(m(X)*"[R{ - Id)(s"" )
= (1= (N)o/N%) u® (R — 1A (9 1)
To estimate the r.h.s. term in the above display we use the decomposition
pOUREY — 1d)(¢f) = L+ I

with

I

5(a)( (@)
o [ p@ @y | BNV ea (@)
uq<RN (g"") BO () “ (g f)D

L= p®f) W RY (o) ~ 1]
‘We observe that
Bl < uCURY (9) = 1 = TR — 1d(g)]
L] < p®RP(g) <1+ p®IRY - Id)(9)|

14



From these estimates we find that
[E(m(X)® (9 f) — u® (g9 £)|

< (1= (N)/N?) [1+2/p®RY — 1d)(g )]

1

(1— (N)g/N%) +2 |u®[RY ~ Id)(g)]
Consequently we have
[E(m(X)®9 (99 £))—p® (99 F)] < (1—(N)g/NV+2[E(m(X)®* (g'V)) -1

and by lemma 3.3 this implies that

B0 (600 - i GOD] < @ W/ + e e ()

2N
E [1 +e i ]
N Y\ 2N

Using the same lines of reasoning as in the end of the proof of lemma 3.3
(cf. pp. 25, subsection 4.2 of the Appendix) we also prove that for any
n>1

IA

[E( [m(X)®(gF) — u® (g 1" )| < 2°T % [1+e (%)]

This ends the proof of the proposition. [ |

Proof of theorem 3.1:

By definition of ¥(?) no generality is lost and much convenience is gained
by supposing (as it will be done) that we have u(g;) = 1, for each ¢ > 1.
To prove (14) we use the decomposition

T (m(X)®)(f) - 8O WP (f) = TO0mX)®)(f - 199 1)
= h+D (18)
with
L= mX)®g(f - (g f))

L o= ¥OmEX))(f ~p® (g f) (1-mX)®(g))

1t is now convenient to observe that

pOU gD (f - p®(g ) = 0
If =1 OPI < oself) = ose(f = p® (g f)) < 1

and for any n > 1 we have

B2 (m(X)®)(f) = ¥ u)(HI") <2771 (BUI") + E(™))

A

15



Therefore using proposition 3.1 and lemma 3.3 we check that

2 o 2
B(¥ O (m(0)°)(1) - ¥ ) < e 2 B g, (2020))

This ends the proof of (14). To prove (13) we use again the decomposition
(18). By (17) we find that

2 2
7. q_
Bl <e % e ()

To estimate the mean value of Iz we first use Cauchy-Schwartz’s inequality
to check that

|E(12)]* < (¥ (m(X)®)(f — u® ("D ) E(1 — m(X)®(¢')])
Via (16) and (14) this implies that

2 2
B <ed e (30))

from which we conclude that
2 9 2
B ()27 ~ ¥l e L ey (2]

This ends the proof of the theorem. [ ]

4 Propagations of chaos estimates

This section is mainly concerned with the proofs of the theorem 1.1 and
theorem 1.2 stated in section 1.2.

Proof of Theorem 1.1: We use the decomposition

n

()2 =2 = 3" [@Lh ()% — @EL (@, ()] (19)
p=0

with the convention ®_1,0((n%;)®?) = ¥ for p = 0. Our next objective
is to estimate the differences of measures

1) =aes. [@50((0))°7) — @U@, ((y)®)]

Using (11) we first observe that <I>;q_)1‘p
any f € By(E%)

L) = [#80.(0)%%) — TA(@ ()% PSR(S)

The conclusion now follows from theorem 3.1. First we notice that for
any p € P(E,) we have

((7p=1)®%) = &,(npl1)®? and for

05¢(Gp,n) : Gp,n(2p)

05 {(Gpn) = —=2- < (rpn—1) with 7r,,= su ok AL ik 4

”( pin) #(Gp,n) (s ) i IpvypIéEp Gp,n(yp)
(20)

16



Therefore recalling that 7 = = Z;V:l 56;’, is the empirical measure as-
sociated to a collection of N conditionally independent and 1dentically
distributed random variables &, = (£})1<i<n Wwith common law &, ()" ;)
we find from (13) the P} -almost sure estimate

2 2
B GBI < ¢ & 14 e (35 )] ose(PR)

We recall that for any Markov transition M from a measurable space
(E,€) into a (possibly different) measurable space (E’,£’) and for any
f € By(E') we have the inequality

osc(M(f)) < B(M) osc(f)

From this property we conclude that for any f € By(FE2) with osc(f) <1
we have

B (L (DIFN )] < (P<q>>[1+epn(?;§)] B —as.

By (19) it follows that for any f € By (EZ) with osc(f) < 1 we have
N n 2 2
£ ()0 (1) B (P = e L > BB+ enr (3

Taking into account that
PO (F) = B, (F(€n, - 1 €2)) = By (m(£)°7)

lemma 3.1 ensures that for any f € By(E2) with osc(f) < 1 we have

BN (f) = 09 (f)]

_12 . 22
<@ 0 Z B +enn (22))

<L <1+Z B[ +epn (%)])

p=0

This ends the proof of theorem 1.1. |

To illustrate the impact of theorem 1.1 we present hereafter some easily
derived strong and uniform propagations of chaos estimates.

Corollary 4.1 Let us suppose that the iriplet (En, Gn, My) is time ho-
mogeneous and the following regularity conditions are met

G(z) 2 e(G) Gly) and M™(z,.) 2 (M) M™(y,.)  (21)

Jor some ¢(G), (M) >0, m > 1 and for any z,y € E. Then we have

2
PO =2 < ¢ L (14 dD(g,m) [1+ €2 (26°/V))

n0,[n] T

2

17



where

dP(g,n) = i(l——egn(G,]VI))[p/m]S(n—i—l)/\(m e (G, M))

p=0

with € (G, M) = ™ (G) (M) and e(s)(u) is the mapping defined as
ep,n(u) (cf. (7)) by replacing the constant rpn by rm (© = ™ (G)eH(M).

Proof:
‘When the regularity conditions (21) are met we recall that for any 0 <
p+m < n we have the uniform estimate

Tp,n < e_m(G)e_l (A{[)

and for any zp,y, € Ef and any non negative function ¢ on Ej .,

Loen@)@D) o o ooy Mopem(©))
QWD) — T ML (1) ()

By definition of the Dobrushin’s ergodic coefficient this yields that
BPIR) < (1—eh(G, M)l P/m
Recalling that r,, < e~ (*"P)(G) we observe that for any p < n

Ton <€ (G e H M)V 1) = e ™(@)e (M)

and consequently sup,, epn(u) < el (u). From previous calculations
we easily find that

2

B =0l < ek (1+1+el 2’ /)] 4 (g,m))

This ends the proof of the corollary. ]

Corollary 4.2 Assume that the regularity assumptions stated in corol-
lary 4.1 are met for some (G), (M) > 0 and m > 1. Then using the
same notations as in there we have the uniform propagations of chaos
estimate

2

q ~9( (€) (9,2
lu SCN (1+ m e (G, M) [1+ e, (2g /N)])

(N,q) ®q
su ”IP
n>1()) m0,[7] ~

In addition for any non decreasing sequence of time horizons n(N) and
particle block sizes q(N) such that limy e n(N)g?(N)/N = 0 we have
the increasing propagation of chaos property

fimsup o~ S POAN)  1950 e < /((G)N)

18



The end of this section is concerned with the proof of theorem 1.2. Qur
first task is to better connect the distributions

PLVD = Law((€o.n))1<i<q) € P(Efp,ny)

n0.1

with the Markovian structure of the interacting particle model defined in
(3). Notice that for each 0 < p < n and 1 < g < N the state space

E[(z,)n]=E§><---><E3

represents the set of the first ¢ paths from time p to time n of the Markov
particle model while the product space

EY = (Epx...x En)?

represents the state space of the paths of each of the first ¢ elementary

particle from time p up to time n. We shall also use the notation E(p)n] =

E[(g_),_l,n] ‘We recall that E(g ] and E[O,n] are connected by the mapping

oL : E[(g’) — Eq ) defined in (10). For instance for ¢ = N we have
OF (€o,... ,&n) = § [0,n] and Pno,n =P} .0 (0F) " where

Phn =Ppy o (o, &) € P(EY))

In this connection it is also convenient to associate to the pair of path
measures ((I'Y)®?, (I'V)29) defined in (4) the distributions

Iy = (07)% 0 (0%) 7" and T = (T))% 0 (03)7" € P(EQ.,)

In other words we have with some obvious abusive notations

(Nyg)

Fn - Z 6((€a( )1<!<q’ '»(En ))1<1<q)
ae(N)<q)

(N.gy !

Tn = ), 2 Ses M gigar €8P grcy)
a€(q, V)

Lemma 4.1 For any pair of integers 1 < ¢ < N and any test function
Fe Bb(E(Q) ) with |[F|| <1 we have

[EN (T (F)) — EN (F((E8)1<i<ar - - » Eh)1<i<a))| € (¢ = 1)*/N

Proof:
By lemma 3.1 we observe that

T2 = (T < (¢ = 1?*/N (22)

By the exchangeability property of the particle model we also have that
for any a € (¢, N) and F € Bb(E n])

EN (F((€5P)1<i<qr- - » (68D)1<icq)) = BN (F((€D)1gi<qs - - » (Ei)1<iza))
This implies that

EN (CSV(F)) = EY (F((€h<i<a, - - » (E)1<i<q))

19



However (22) also ensures that

(T — iV < (g - 1)°/N (23)
from which the end of the proof of the lemma is easily completed. n

‘We are now in position to prove the theorem.

Proof of theorem 1.2: In a similar fashion as in the proof of theo-
rem 1.1 we use the decomposition

PO -1l = 3 [ @) - o @, o] ey
p=0

As usually we take the convention for p = 0, QS?%,O(FQX’Q)) =n®9. To
describe more precisely each term in the above summand we first observe
that for the g-tensor product measure (1 )®? € P(EZ) is the p-th time
marginal of "9, On the other hand, by definition of the semi-group
0% we have

BREE) = TN © B () U2

and
N, N, ,
Q@ o)) = P ee?, (1)) =T @ &,(n) )%

This implies that for any 1 < p < n we have

Q2

p—Ln

CE) = @2, @)

p—1,p\" p-1
= T2 © &p(1p-1)% © B (25 (0,00) " P U
Let Q‘f,‘f,’lm be the random measures defined by
QY =T @ B ()1 TPU
Using lemma 3.1 we find that that for any p < n
1955 = LTl < (g = 1)*/N (25)
As a parenthesis, using lemma 2.2 we already notice that
Qi = T @B (o) U,

= T @@,m)l1)% © B (@,(n) 1)1 P)UL) (26)

Now by (24) the estimates (25) imply that

oo ol =S @ - ) e <20+ 1)(g - 1)Y/N(27)

p—-1,n
p=0

with the convention, for p = 0, Q(_qif\;) =1 =581 ®B(()?,)L (ngb"")Ué?,z. By
symmetry arguments it is now convenient to observe that for any p < n,

20



and any test function ¢ € Bb(E[(;,Z,)n]) the following sequence of random

variables does not depend on the choice of « € {g, N)

EN ( / (B () )2~ ULD ] (dy) o((€5D)1<i<qs ¥ Farr)
—EY( / (B ()27~ USD](dy) (€ )rcica )| EN 1)

=B ( / (1)°% © (B ()27 U )) (d(z, 1)) ola )| L)

(a)

(p.n]" Using this

where the integral is taken over the product space E

property we prove that for any f € Bb(E[(gL])

Epo (U5 () | FLy)

=B} (037 @ B () P)USR(S) | FpLa)

= En (057 @ (1) @ B ()" USRI | FYa)
On the other hand using the fact that

(m5)°% = ()l < (g — 1)?/N
we find the P%-almost sure estimate
BN (55 = 1) | BLOIS Il (a=12/N (28)

with
G =aer. T © (1) @ By ()" )Ug

In the above display and for p = 0 we use have used the convention
~la, N n
Q2" = 05)®" @ BEL((m)**™ Ut

In these notations we have by (26) the formula

Of4e, , N n—
G0 -l = O el @ Bl () )

p~-1,n

—@,(78-1)%? ® BY.(@,(np)®* P Ui

Let B{%) be the extended Boltzmann-Gibbs transformation on P(ELRPH))
defined for any pair (v, @) € (P(EI™"PT)) x By (EZ"PT1Y) by

B w)(p) = v(T{R(1) @) /v(T(1))

with the non homogeneous potential functions T4% (1) on EZ™ V) given
by

91 = GRecY 0.6,

21



In these notations, recalling that G, = 1, we find that for any 1 € P(E})
and v € P(EI™"P)) we have

n® B (v) = By (n o)
This readily yields that

G o)

N ~ - o n—
=T;20 ® (BB ()1 72+D) = By (2, ()7 D)0

Using theorem 3.1 and arguing as in (20) we obtain the following P} -
almost sure estimate

BN ([25% — @2 1AHIFEY D
(g(n—p+1))? 2(g(n — p+1))°
colinp iy, (Helnop )

as soon as {(n+ 1)g < N and ||f|] £ 1. This readily implies the rather
crude and almost sure upper bound

2(g(n + 1)) y
N
(29)

B2 (@ — e DIE ) < e COEDY 1,

p—1,n

with the mapping e, (u) defined as in (7) by replacing the constants rp
by rn = sup,<, rp,n. Combining (27), (28) and (29) we conclude that for

any f € By(E{,) with [|f]| <1
n 2 n 2
EY (TS —T@)(1)| < e (n+1) QB [1 4 e, (Halndl) y)

By definition of ]Pg,g’,’,‘f) and TY"? the total variation estimate (8) is now a
simple application of lemma 4.1. This completes the proof of theorem 1.2.%

Appendix
4.1 Proof of lemma 3.2

We first use a symmetrization technique. We consider a collection of in-
dependent copies X' = (X'*);>1 of the random variables X = (X*);»1.
We also assume that (X, X'} are independent. As usually we slight abuse
notations and we denote by m(X') = & fo__ 1 0xi the N-empirical dis-
tribution associated to X'. We observe that

m(X)(h) = E(m(X)(h) — m(X")(h)| X)
This clearly implies that for any p > 1 we have that
E(jm(X)(h)”) < E(m(X)(h) — m(X")(R))

22



‘We first examine the case p = 2n with n > 0. In this situation we have

NPE(Im(X)(h) — m(X")(h)]*™)

2n &
= Z Z % Z H]E((h(X“(i)) — R(X'yPiy

p1! . . "
k=1p1+...4pr=2n a€(k,N)i=1

where Zm o bpp=2n indicates summation over all ordered sets of strictly
positive integers p; > 1 such that p1 +... + pr = 2n. Since we have

E([A(X7) = h(X")PP) = —B([A(X") — (X")]") =0
for any 1 € 7 < N and any odd integer p we check easily that
N2E(jm(X)(h) — m(X")(h)]*")
B SN DI 0 N S s SRS
k=1p1+...4pr=n (Zpu)t-- (2p)! a€lk,N) i=l
k
< (2n)n < sup  sup H(2Pi);,-l> E((3 /L, [A(XF) — h(X"™))*)™)
1<kSn prt-Fpr=n ;)

Using the fact that for any p > 1 we have

(2p), = Cp)/pl=2p(2p—-1)...(2p—(p—1))

Il
—=
)
+
Ko
\%
v
4

we conclude that -
N"E(jm(X)(h)~m(X")(R)*") £ (2n)n 27" E((% ﬁ;{h(Xi)—h(X'i)]z)")
and tiwrefore _

N'E(m(X)(W)") < (). 27" IE((]%,— i [A(X7) = h(X™))™)

We readily conclude that
NTE(Im(X)(R)*™*) < (2n)n 277 osc(h)™”
as soon as osc(h) < oo In the same way if we have u(h*™) < co then

N"E(jm(X)(R)") < (2n)n E(m(X)(h®) +m(X')(R*))")
< (2n)a 2" E(m(X)(R*)™) < (20)n 2" p(R™")

This ends the proof of lemma 3.2. For odd integers p = 2n + 1 we use
Cauchy-Schwartz’ inequality to check that

E(m(X)(R)1")? < B(Im(X)(B)]*) E(jm(X)(h)[*" D)
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From previous estimates we find that
N E(Im(X)(R)]**)? < (20)n (2(n +1))npa 27 MY osc(n)?CmHD)
as soon as osc(h) < co. Since

2(n+ 1)) 2n + 1!

2 1 = =2 - =2 (2 1)n
(2(n+ 1))t (n+ 1) = 2n+ 1)nt1
!
(Qn)n _ _21_1_ — 1 2n + 1! _ (27'L+ 1)n+1
n! 2n+1 n! (2n+1)

we get

N2 E(lm(X)(R)[*"+1) < (2n+ Dnt1 9= (n+1/2) osc(h) @D

vn+1/2
In the same way for any h such that p(h?™ V) < 0o we have

(n+ 13,

N7 E(m(X) (D)) < n+41/2

22n+1 #(hQn)'u(h?(n—{-l))
Since

p(R*M)p(R*) < p(R* D)

we conclude that
Jvn—i-l/')E(Im(X (h)lon+1) < (2n+ 1)n+1 2n+1/’> (h.,(n+1)) "(nl-i-])
n+1/2
4.2 Proof of lemma 3.3
We first prove (16) for n = 1. Using the decomposition

H(1+a =1+ Z Z Hah

1<p<q 1K1 < KipLg j=1

which is valid for any ¢ > 0 and any collection of real numbers (a;);>1 we
find that

E(Hm(X g —-1= > > H (X)(g5) = 1])
28p<g 1<y < <ip <y j=1

Using Holders’ inequality we find that

q

EQIm(X) (@) ~1= > CF E(m(X)(g) —1P)

i=1 2<p<q

with
E(lm(X)(g9) = 1I") = sup E(lm(X)(g;) — 1I")
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Suppose g = 2¢’ is an even integer. In this case using lemma 3.2 we find
that

IE(T12, m(X)(g:)) — 1]
< 2p osc?(g) 2p+1 (2P + Dpy1 [0sc?(g) pi/z
5:4:102@' 2 ( 2N > +ZC NESVE ( oN )

In the above display we have used the notation osc(g) = SUp,>y osc(g:).
Since we have the estimates

S S ') LI -0 P 0 sl
= pt 2¢=2p)!  pt — p! !
1 (2¢')! (2¢)2pr1 _ ¢!
2p+1 — — P
RO T ey T E 1)

this also yields that

IN

B ] m(X)(g:)) - 1l

i=1

iz% (oqNOSC (9)> + Z ( osc (g)>"+1/2

< (1+osclg) q/x/ﬁ)z L (Lost0))

Recalling that for any n > 0 and € > 0 we have

nlp

Z— <eZ— <ee

p=1

we arrive at
q qz qz
i) — < == =
B[] XN -1 £ 35 ey

with eg(u) = osc?(g)(1 + osc{g) v/u)exp (osc®(g) u). The proof for odd
integers ¢ = 2¢’ + 1 is derived in a completely analogous fashion. This
ends the proof of (16) when n = 1. Next we prove (16) for even integers
n=2n', n' € N. We use the decomposition

E([m(X)*(g") =) = ch B([m(X)® (4 ))
p=0
= Il + I2 + .[3
with
L= Y C [B(m(X)® (g ) - 1]
p=0
I, = _ni szj_l ]E(['m(X)®q(g(q))]2p+1 1]

n'—1

TL
2 2 1
no= Son-Tanr-
p—.

o
t



Next we observe that for any n > 1 we have
E(fm(X)® (¢)]") = B({m(X)®@™ (g4™)]
with

m(X)®(q,n) — m(X)®q ®..® m(X)®q and g(q,n) — g(q) ®...8® g(q)
N— ————

n times n times
From previous considerations we find that

n!

Il = S0, [B(m(X)°6) (g 1]
p=1
< S (2p0)° (29)*\ . (ng)® (2)) = (2
= ;:,1 N %\ Tan )= TaN 9\ an ; 2/

Using similar arguments we find that
]
("‘1)2 (“(1)2 E 2p+1
< :
S A T pz_:O Can

from which we conclude that

B [m(X)® (@) —1]* )] < 2" @732“ € ((Zf"\”

The proof of this estimate for odd integers n = 2n’ + 1 follows the same
arguments. This completes the proof of the lemma. [ |

4.3 Combinatorial techniques for empirical mea-
sures

Throughout this section (F, £) denotes an arbitrary measurable space. In
the further development of this section we fix the integer N > 1 and for
any z = (¢!,... ,z") € EV we slight abuse notations and we set

1 N
m(z) = Z 8. € P(E)

the empirical measure associated to the N-uple z. For any 1 < g < N we
introduce the empirical measures on E? defined by

1
m@)® = 5 D e pew)
ag(N){D)
1
m(x)eq = — Z 6(wa(l)’“"$a(9))
(1 )q a€(g,N)
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Note that each mapping @ € (N )(‘1) induces an unique equivalence relation
~q on {q) defined for any 7,5 € (g) by

i ~a § == ali) = a(f)

The corresponding set of equivalence classes (g), can alternatively be
regarded as a partition 7, of the set (¢). More precisely if b(m,) stands
for the cardinality of the set «a({g)) then we have

o = {ma(l),... ,ma(b(na))} with 7a(i) # ma(j) forany i#j

and
(@) = Ul ma (i) with (i) = {5 €(g) : o(j) = (i)}

Inversely to each partition 7 of the set {g) with b(w) blocks we can associate
in an unique way (N), different mappings o € (N}{?. To be more precise
let < be the order relation on the subsets of (¢) defined for any A, B C {g)
by

A<B<inf{i : i€ A} <inf{i : i€ B}
Notice that the b(ma) blocks of partition m of (¢) can be written in the
increasing order

™ Sﬂ’z S S Th(ra)

We associate to 7 and to each one to one mapping 8 € (b(n), N) the
mapping af € (NY? defined by

b(m)

op = ) B(i)lx
1

—~

i

From these one to one associations we find the decomposition
<N>(Q) = UZ:l U7r:b(7'r)=p {ag : IB S <p7 ]\T)}

In these notations, for any z € E” and any numerical function f on E?
we have that

m(z)®(f) = "J\%Z Z Z e OO

p=1q:b(m)=p BE(p,N)

= NLZ DD DRRA0) (AN L)

p=1 mb(x)=p B€(p,N)

with the Markov kernel C? from E? into E? defined by
1 p . p .
C2(A)(a',..,a") = fFO o' n (1), Y ' le(p))
i=1 i=1

It is now convenient to observe that for any p < ¢ we have

B Toepun CHHED, .., 250)

= w5 Lsetam Cha(HED,...,2P9)



with the extended Markov kernel C¥ . from E? into E? defined by

1
CrA(f)a's...,a%) = C2(f)(z',... ,a")
From previous considerations we arrive at

q

Z (Vs S(p,q) m(z)®Cs

with the Markov transitions C%, p < ¢, on E? defined by the formula

P_ 1 P
Ca ()pﬁZ (p,q) >, Cin

€(q,N) mib(m)=p

In the above displayed formulae S(p, q) stands for the Stirling number of
the second kind corresponding to the number of partitions of ¢ elements
in p blocks. Using the fact that S{q,q) = 1 and C{ . = Id we prove easily
the following result.

Proposition 4.1 For any z € EV and 1 < ¢ < N we have

(N)

m(z)®? :m(z)ongg) with R(Q) = ( )q Id+ (1 - ~—2) Rf\(,’)

and the Markov kernel Rgf,]) on E? defined by

q—1

R = N%(N);Z (M), S,0) CF

One easy consequence of this formula is that

(1 - @—) Im(@)®* (R — Id)[es

lln(2)®? = m(2)®lev

IA
g
|
s}%
-

(g—1)?
N

IA
p—
|
TN
=
|
<y
2|
—
N’
=]
|
-
IA

(30)

We end this article with a more probabilistic connection between m(z)®?
and m(z)®9. We first observe that for any ¢ > 1 and any f on E?%?

(m(z) ® m(2)®?)(f)
— a(l) a(2) a(q)
—N(N Z Z f@ = R
. i=1 a€{q,N)
= a(l) o(2) a(g+1)
"“N(N)q Z f(iE & 1oy @ )
a€{g+1,N)
1 ’ ; a
+W Z Zf(xa(’),wa(l),z“(z),... T (q))
7 ae(g,Ny i=1
= (1 - I%) m(x)G(‘”'l)(f) m(m)e(q+1)(r(q+l)(f))
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with the Markov transition 7,41 on E?! defined by
N 1,
T(q+1)(f)(xo»a:17 s ’xq) = Ez.f(w 7"1717 ce 71:Q)
i=1

This readily yields that

m(z)@m(z)®? = m(w)G(q“)rf\‘}H) with rf\‘,’+1) (1 - i) Id+—% Fat)

N
The probabilistic interpretation of rf\‘,ﬁl) is quite elementary. Starting
from a given configuration (z° 2',... ,2?) € E9T! the Markov transition

consists to keep this (g+1)-uple with a probability (1 — %) and otherwise
we replace the first component 2° by choosing randomly and uniformly
one of the another components z*,... 2% To develop an inductive con-
struction we associate to a given transition r on some product space E?
a transition Ext(r) on some product space E97! by setting

Ext(r)((2%,2',... ,29),d(" «*, ... ,y?))

=8,0(dy®) r((c*, ... ,29),d(z*, ... ,y9)

In these somehow abusive notations we have for instance

m(x)®2 = m(z)mrﬁ)
m(a;)®3 = m(m)@m(az)®2

= m@)® (m()r])

= (m=z)® m(m)eg)Ext(rg\?)) = m(:z:)@er)Ext(rg\?))
More generally if we define using backward induction

RJ(\‘,]H) = r%)Ext(R%)) with 7?,53) = rg\?)
then we conclude that

m($)®q — m(z)Qngg)

(a)
N

To describe more precisely the Markov transition R}’ we introduce a

sequence €9 = (eg‘“, ..., of ¢ independent and {0, 1}-valued random
variables with respective distributions

P =0)=1-P(? =1)=2_"

N
Notice that for ¢ = ¢ we have e,(,q) = 1. We also associate to a given con-
figuration (2, ... ,2%) € E? a collection of independent (and independent
of €9) random variables (%Y, ... (@) with respective distributions

q
#(9>9) _ 1 .
P(z € dy) = E . E 0gi
j=i+l

with the convention #(%? = z9. From the inductive construction of ’R,g\?)
we observe that the E?-valued random variable

7o) — (55((7‘1)7 o ’;E‘(q,q)) with (@9 = eg‘nxi +(1- el(‘q))i(q,i)
is distributed according to R\ ((z, ... ,x9),.). ]
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