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ABSTRACT

The popular methods for mapping quantitative trait loci (QTL), like interval mapping or com-
posite interval mapping, do not allow to locate QTL which do not have additive effects and influ-
ence the trait only by interacting with other genes. The direct solution to the problem of locating
epistatic QTL is to use multiple regression model with interactions and search for several QTL
simultaneously using multidimensional version of interval mapping. The utility of the multiple
interval mapping is however limited by two interconnected issues. First of them is the difficult task
of deciding how many terms should be included in the corresponding regression model. The second
is the computational complexity of the search over the great space of possible multidimensional
models. In this paper we report the results of the simulation study in which we demonstrate that
multiple interval mapping can appropriately locate linked and epistatic QTL and address important
statistical and computational issues related to its application. In particular we test the popular
model selection criteria designed for multiple regression and show that in the context of QTL map-
ping they have a tendency to overestimate the number of QTL and their interactions. We explain
this phenomenon and argue that an easy modification of Schwarz Bayesian Information Criterion
can handle the problem of the overfitting. We also give a brief review of different random search
procedures which can be’used to speed up the search over the entire model space and suggest
that these developments coupled with improved computing power have the potential to solve main

problems related to the application of multiple interval mapping.
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INTRODUCTION

Locating genes which influence quantitative traits (QTL) has a long history and still remains one
of the most important tasks of statistical genetics. The earliest methods for QTL location (see
e.g. Soller et al. (1976)) used standard statistical procedures like t-test or ANOVA to look for
association between marker genotypes and trait values. These methods have a relatively low power
of detection if the QTL is located in the middle of the interval between two distant markers and do
not allow to separate the QTL effect and its location. To make it possible to locate QTL which lies
inside the interval between two markers Lander and Botstein (1989) introduced Interval Mapping
(IM). This procedure employs EM algorithm (Dempster et al.,1977) to compute likelihood ratio
tests for the presence of QTL on a dense grid of possible QTL locations. Though IM is based
on a single QTL model it is usually used in genome scans aiming to locate all relevant QTL.
Presently interval mapping is a widely accepted procedure for QTL location and has become the
basis for further developments. The extensions of IM went in many directions. To avoid using
EM algorithm an approximation to IM by a simple regression scheme was proposed by Hayley and
Knott (1992) and Martinez and Curnow (1992). Another extensions, composite interval mapping
(CIM, Zeng 1993, 1994) and multiple QTL mapping (MQM, Jansen 1993) improve the accuracy of
locating multiple QTL by including some markers’ genotypes as additional predictors in regression.
A review of these classical methods for detecting and locating QTL can be found e.g. in Doerge et
al. (1997) or Churchill and Doerge (1997).

While the classical methods of QTL mapping cope very well with the problem of locating QTL
with additive effects they are usually not able to detect those QTL which influence the trait only by
interacting with other genes. The problem of detecting such epistatic QTL was recently addressed
by Jannink and Jansen (2001) and Boer at al. (2002), who proposed two new methods based on one
dimensional genome searches. In particular in Jannink and Jansen (2001) epistatic QTL are located
by identifying loci of high QTL by genetic background interaction. This method requires large
populations derived from multiple related inbred - line crosses and inherits characteristic to MQM
problems related to the choice of marker cofactors. In turn Boer et al. (2002) address the problem
of the choice of cofactors. They propose to include all available markers in the regression equation

and use a Bayesian approach to penalize large values of the corresponding regression coefficients.




One of shortcomings of this method is that it requires the initial choice of ”the effective dimension”
for epistatic interactions, which has a strong influence on the power of detection.

In this paper we point at another direction in the search for an efficient method to locate
multiple interacting QTL.

The direct solution to the problem of mapping epistatic QTL is to use multiple regression model
with interactions and search for several QTL simultaneously. The corresponding multidimensional
version of interval mapping (MIM) was proposed by Kao et al. (1999). The utility of MIM is
however limited by two interconnected issues. First of them is the need to develop a statistical
tool for deciding how many terms (additive effects and epistasis) should be included in the fitted
model. The second is the computational complexity of the search over the great space of possible
multidimensional models.

In this paper we report results of the simulation study in which we demonstrate that, contrary to
standard one dimensional interval mapping, its multidimensional version can appropriately locate
linked and epistatic QTL. We also address important statistical and computational issues related
to the application of MIM. In particular we consider the problem of the estimation of QTL number.
We test the popular model selection criteria designed for multiple regression and show that they
have a tendency to overéstimate the number of QTL and their interactions. We explain this
phenomenon and argue that an easy modification of Schwarz Bayesian Information Criterion can
handle the problem of the overfitting. We also briefly mention some of recent developments in
Bayesian variable selection and discrete optimization methods and suggest that these procedures,
coupled with improved computing power, have the potential to solve the main problems reducing

the applicability of MIM.

METHODS

Advantages of MIM: To illustrate the difficulties which standard one dimensional interval map-
ping has with detecting linked and epistatic QTL and show the superiority of using appropriate
multiple regression model we performed some computer simulations. All the programs used in this
paper were written in Matlab and were run on the machine IBM R5/600 F50 in the Department of

Statistics of Purdue University.




We simulated samples of 200 individuals from backcross population for three different genetic
models. For each individual we used Haldane’s model of no interference to simulate genotypes of
11 markers spaced every 10 ¢cM on one 100 ¢cM chromosome. We also simulated genotypes of two
QTL located at 24 ¢cM and 56 cM from one end of the chromosome.

To show problems with separating linked QTL we simulated the trait data Y; according to the

linear model

Yi=pt+aXyu+aXy+& ,i=1,...200, (1)

where Xj; is the genotype of 1-th QTL for i-th individual (Xj; = % for homozygote and —% for
heterozygote) and & ~N(0, 02) is an environmental noise.

For the first example we used parameters from Example 13 in Piepho and Gauch (2001): p =0,

a1 = 1.5, ag = 1.25 and o = 1, which yield heritability (percent of the variation in trait explained‘

by QTL) h? = 59%.
At first we analyzed our simulated data with a standard interval mapping based on a folowing

single QTL model:
Yi=p+aeX;+& . (2)

Here Y; denotes the trait value for i-th individual, X; is the genotype of the putative QTL and
£ ~N(0,0?) is the random error. For each of the potential locations of QTL, which we spaced every
1 cM, we used the genotypes of flanking markers to assign conditional probabilities to possible QTL
genotypes and fitted the model (2) by invoking EM algorithm of Jansen and Stam (1994). The
resulting maximum likelihood estimators of the parameters in the model (2) are denoted by i, a,
and . Then at each location we computed the lod score statistic;

Lp, 6,0

Lod = logy EE—'I;Z”—()% ,

where L(ji,d,5) is the likelihood of the data under the model (2) with parameters fi, &, & and
L(ji,0,5) is the likelihood of the data under the null hypothesis of no QTL (a = 0 and /i and & are

meximum likelihood estimators of the mean and standard deviation computed upon the assumption




that the trait data are normally distributed). Large values of the lod score statistic suggest that
a QTL is in the neighborhood of the considered position. Though there exist many theoretical
and empirical methods to choose the suitable threshold (for references see e.g. Doerge and Rebai,
1996) in practical applications the presence of QTL is usually acknowledged if the lod score statistic

exceeds value 3 somewhere on the genome.
HERE FIGURE 1

In the first graph in Figure 1 we present the plot of the lod score statistic resulting from
standard interval mapping as a function of the location of the putative QTL. We can observe
that the maximum of the lod score function exceeds 37 (which strongly suggests QTL presence)
and is obtained at the position of the stronger QTL (24 cM). Then the lod score function slowly
decreases and the second QTL (56 ¢cM) is not disfinguishable. Thus in this example the standard
one dimensional interval mapping appropriately locates the stronger QTL and does not detect the
weaker one.

In the second graph in Figure 1 we present the results of the analysis of the same data by the
two dimensional interval mapping based on the appropriate model (1). At each point on the net of
locations of two putative QTL, which we spaced every 1 ¢cM in both directions, we computed the
lod score statistic according to the formula
L(j,d1,d9,8)

L(3,0,0,6) °

where fi, 41, 2, 6 are maximum likelihood estimators of the parameters of the model (1) computed

Lod = log;,

by EM algorithm. In Figure 1 we can observe that the lod score function resulting from the two
dimensional interval mapping obtains its maximum at the point (24 cM, 61 cM), which is very
close to the true location of simulated QTL. Thus the two dimensional interval mapping performs
better than its one dimensional version and allows for appropriate location of both QTL.

For the second example we simulated the trait data according to the model (1) with parameters
p=0,a; =125 a; = 1.25 and o = 1, which yield heritability h?> = 54.4%. Note that in this
model both QTL have the same genetic effects.

HERE FIGURE 2




In Figure 2 we present the plots of lod score functions resulting from analysis of our data
with one and two dimensional interval mapping. Results of the one dimensional interval mapping
demonstrate a typical example of the so called "ghost” effect. The maximum of the lod score
statistic is obtained at the point 35 cM, which is in between the locations of true QTL (24 cM, 56
cM). There is a weak local maximum at 27 ¢cM (close to the location of the first QTL) and no local
maximum close to 56 ¢cM. Thus the one dimensional interval wrongly suggests the presence of QTL
at 35 ¢cM and does not detect the second QTL.

The second graph in Figure 2 shows that the two dimensional interval mapping allows for precise
localization of both QTL. The corresponding lod score statistic obtains a maximum at the point
(25 cM, 54 cM), which is very close to (24 cM, 56 cM) - the true location of QTL.

To illustrate the problems with detecting epistatic QTL for the third example we simulated the

trait data according to the model

Yi=p+a1 X+ aeXo +a3 X Xes +& ,i=1, ... 200 . (3)

The term a3X;;Xs; corresponds to the epistasis. We used parameters p = 0, a1 = 0, ag = 0,
a3 = 4, o = 1. Thus our simulated QTL have no additive effects and influence the trait only by the

epistatic (interaction) term. The percent of the variation of the trait explained by QTL is 41.9 %.

HERE FIGURE 3

In Figure 3 we present results of the analysis of our simulated data with one and two dimensional
interval mapping. The two dimensional interval mapping is based on the correct model (3) and the
lod score statistic is computed according to the formula
L(ji,é1,492,03,8)

Lod = logi =17575.56..5)

In Figure 3 we observe that the lod score statistic resulting from one dimensional interval
mapping doesn’t exceed the value 0.5, which is definitely below the threshold to detect the QTL
presence. The presence of epistatic QTL is however well detected by the two dimensional interval
mapping. The maximum of the corresponding lod score statistic is equal to 27.57 and is obtained

at (26cM, 55cM), which is again very close to the true location - (24 c¢M, 56 cM).
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Search over markefs: While, as shown above, MIM can help in detecting linked and epistatic
QTL its utility is restricted by its computational complexity.

For example we consider the problem of locating two QTL on a 100 ¢cM chromosome. In this
case the two dimesional interval mapping with the step of 1 ¢M requires fitting the model (1) or
3) (121) =5050 times. Moreover each time we fit the model we have to invoke EM algorithm, which
on its own requires some iterations. The complexity of the problem drastically increases with the
size of the part of the genome we want to search. For example two dimensional interval mapping
with the step of 1cM over the genome of the length 2000 cM requires fitting the regression model
approximately (20200)=1 999 000 times.

To speed up the search process some authors proposed to use random search methods, like e.g.
genetic algorithms (see e.g. Carlborg, Andersson and Kinghorn (2000) and Nakamichi, Ukai and
Kishino (2001) ). These methods are usually much quicker than the extensive multidimensional
search but they do not guarantee to find the optimal solution.

Another way to reduce the complexity of MIM relies on identifying interesting genome regions
by using the initial search based on a coarser grid of locations. In the Bayesian setting this
approach was suggested e.g. by Sen and Churchill (2001), who use the initial scan based on a
10 ¢cM pseudomarker grid. In the situation when there exists an accurate genetic map (distance
between markers < 15 ¢M) it is natural to base this initial search on the net of marker positions,
which in many cases helps to avoid using EM algorithm. The search over markers was succesfully
used to locate multiple QTL e.g by Ball (2001), Broman and Speed (2002) and Bogdan et al.
(2003).

Model selection criteria: Restricting the search for QTL to marker positions reduces the
problem of QTL mapping to the problem of the choice of the best multiple regression model, with
marker genotypes being the regressor variables. An important and difficult part in fitting such a
regression model is the estimation of the number of additive and interaction terms which should be
included. As shown above, if we make a mistake at this point we may obtain wrong QTL locations
or skip some important QTL.

The standard way of deciding how many additive and interacting (QTL) terms should appear

in the model relies on using many consecutive statistical tests (see e.g. Kao et al. (1999)). A




disadvantage of this approach is that it allows the comparison of only nested models. It is also
unclear how to adjust the significance threshold for each test to provide the full control over the
type I error.

An alternative way to decide on the number QTL and their interactions is to use one of many
statistical criteria for the choice of the optimal regression model. This approach was succesfully
used by Broman and Speed (2002), Piepho and Gauch (2001), Nakamichi et al. (2001) and Bogdan
et al. (2003).

In particular Broman and Speed (2002) and Piepho and Gauch (2001) recommend using Schwarz
Bayesian Information Criterion (BIC, Schwarz (1978) ) to estimate the number of QTL with additive
effects. BIC, which is used in many different applications in statistics, recommends choosing the

model M, which maximizes the expression

1
Sy =log Ly — §klogn , (4)

where L)y is the likelihood of the data for the model M, k is the number of parameters in the model
and n is the sample size. BIC belongs to the wide class of the so called penalized maximum likelihood
methods and the second term in this criterion, 1k logn, is called the penalty for the complexity of

the model. In the context of linear regression maximizing S is equivalent to minimizing

BIC =nlog (#) +klogn (5)

where RSS is the residual sum of squares from regression.

Broman and Speed (2002) use BIC to choose markers which are strongly associated with the
trait. They report that in this context the original BIC works poorly and has a tendency to
overestimate QTL number. Therefore they propose to increase the penalty for the number of

parameters and consider the criterion

BICs =nlog (—}?—Sﬁ) + dklogn

where § depends on the length of the genome and the sample size via the formula

2Ly
~ logign
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Here Lgs is the 95th percentile of the maximum LOD-score of interval mapping or the ANOVA at
marker loci, genome wide, under the hypothesis that there are no QTL. In the examples investigated
by Broman and Speed (2002) the values of ¢ are in the interval between 1.5 and 3.

Let us observe that since

2Lgs
logion

dklogn = klogn = 2kLgslog10

the penalty in Broman and Speed criterion does not increase with n. (Actually the values of Lgs
reported in Broman and Speed (2002) decrease with n). Therefore this criterion differs a lot from
the original BIC and lacks the property of being consistent (i.e. even for huge sample sizes the
probability of chosing the proper model is essentially different from one). Simulations reported in
Broman and Speed (2002) show however that their method of locating multiple QTL performs well
and can yield better results than the popular composite interval mapping.

Piepho and Gauch (2001) also recommend using BIC to choose the number of QTL. Instead
of including individual markers they propose to include pairs of adjacent markers. Thus, at each
step they try to add a pair of markers to the model and increase the penalty by the quantity
corresponding to two regressors. It turns out that this algorithm works pretty well and does not
require changing penalty in BIC. However it is important to notice that the penalty in BIC is
inflated in other way. Two adjacent markers genotypes are strongly correlated. For example in the
backeross population the correlation between genotypes of markers separated by 10 ¢M is equal to
0.82. Thus the decrease in RSS we obtain by including these two markers is similar to the decrease
in RSS resulting from including only one of them. Despite of that the penalty in Piepho and Gauch
algorithm is increased by the quantity corresponding to two independent regressors and thus has
good performance.

Nakamichi et al. (2001) propose to use Akaike Information Criterion (AIC, Akaike (1974))
for the choice of the number of QTL. Similarly to BIC, AIC is also used in many applications in

statistics. It suggests to choose the model maximizing

A=logL—k , (6)
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where L is the likelihood of the data under the given model and k is the number of parameters in
the model. In the context of the linear regression it is equivalent to choosing the model for which

the quantity

AIC =nlog (RTSS> +2k , (7)
obtains a minimum. Contrary to BIC AIC is not consistent. It is however asymptotically efficient
in terms of the Kullback-Leibler distance (i.e. for large sample sizes it chooses the model whose
expected predictive power is close to the best possible).

Another criterion for the choice of the best multiple regression model was proposed by Bhansali
and Downham (1977). This criterion is a modification of Akaike’s (1973) final prediction error
criterion and choses the model minimizing the quantity

FPE4— RSS(n+ 3k)

n—k
Simulations reported in Piepho and Gauch (2001) show that Bhansali and Downham (1977) crite-
rion works relatively well when used for the choice of the pairs of markers flanking QTL.

Below we present results of the simulation study in which we used original versions of AIC,
BIC and FPE4 to choose single markers associated with the trait. Contrary to Broman and Speed
(2002), Piepho and Gauch (2001) and Nakamichi et al. (2001), who used model selection criteria
to estimate the number of QTL with additive effects, we consider also models with interactions.

To illustrate some basic pfoblems related to the application of the model selection criteria we

restrict the attention to the models including no more than two QTL. Thus our task is to choose

the best model of the form

Y = p+ 161X + v2B2Xns + 1303 X i Xus + & (8)

where X; is the genotype of -th marker for i-th individual (Xj; = % for homozygote and ——% for
heterozygote) and & ~N(0, 0?) is an environmental noise. 1, 72, y3 can take on values 0 or 1 and

are indicators specifying which terms appear in the model.
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In the general practise of statistics one usually doesn’t consider regression models in which
interaction terms appear Without the related additive terms. However it is known that in some
situations genes without additive effects may influence the trait via the epistasis (see e.g. Fijneman
et al. 1996, 1998). Therefore we decided to consider also the models in which epistatic terms
appeared withdut the related additive terms. The description of the six possible models, which

need to be checked for each pair of markers, is given in Table 1.

HERE TABLE 1

RESULTS

In Tables 2,3 and 4 we report the results of the analysis of some simulated data sets with the
model selection criteria. These results are based on 100 replicates consisting of 200 individuals
from backcross population.

For the first experiment we simulated the distribution of marker and QTL genotypes on a short
chromosome of length 40 c¢M, with 5 markers spaced every 10 cM. Trait values were simulated
according to three models specified in Table 1: model 1 (no QTL), model 2 (one QTL) and model
4 (only epistatic effect). For model 1 we used parameters p = 0 and o = 1/0.563. For model
2 we simulated the QTL halfway between the first and the second marker and used parameters
w=0, B =0.7705 o = 1.1557, which yield heritability h2 = 0.1. For model 4 we simulated
QTL halfway between the first and the second marker and between the fourth and the fifth marker.
We used parameters u =0, (3 = 1.8125, and o = 1.1557 for which the broad sense heritability is
equal to 0.097.

For each replicate we searched over all possible (g) =10 pairs of markers and used model selection
criteria to choose the best model of the form (8). In Table 2 we give the percentage of replicates
for which specific models were chosen. In the column labeled Correct we give the percentage of
replicates for which both the model chosen as well as locations of detected QTL were correct. In
this table we classify the location to be correct if one of the markers closest to the QTL was chosen

(marker 1 or 2 for the first QTL and 4 or 5 for the second QTL). Model 4 is classified to be correct
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if both QTL are properly located.

HERE TABLE 2

In Table 2 we observe that when the search is done over a short chromosome with only 5
markers the BIC criterion performs very well. In all our examples it choses the true model in at
least 83% of cases. Bhansali and Downham (1977) criterion performs decisively worse but still it
can find the appropriate model in over 64% of cases. AIC criterion performs much worse. In all
considered examples it has a strong tendency to overestimate the number of terms in the regression
model. Some insight into this behavior of AIC can be obtained by comparing the penalties for the
number of parameters in BIC and AIC. The constants by the number of parameters in AIC and
BIC penalties are equal to 2 and log 200 ~ 5.3 respectively (see (7) and (5)). Thus the penalty
for the complexity of the model in AIC is much smaller than in BIC and AIC more easily chooses
models with many regressors.

To get results reported in Tables 3 and 4 we simulated the distribution of marker and QTL
genotypes on 10 chromosomes of the length 100 cM. On each chromosome we simulated 11 markers,
located every 10 cM. The trait data were generated according to models 1,2 and 4, as specified in
Table 1. For model 2 the QTL was located on the first chromosome, halfway between the first and
the second marker. For model 4 both QTL were located on the first chromosome. The first QTL
was located halfway between the first and second marker and the second QTL was at the position
of the 10th marker. For models 1 and 2 we used the same parameters as we used to generate data
for Table 2. For model 4 we used the parameters: u =0, (3 = 1.541 and o = 1.1557, which yield
heritability 0.097.

In Tables 3 and 4 we give the percentage of replicates for which specific models were chosen
when the search was done over the first chromosome and all ten chromosomes respectively. In these
tables we classify the location to be correct if the marker chosen is in the neigborhood £ 15cM of

the true QTL (markers 1,2 and 3 for the first QTL and markers 9,10 and 11 for the second QTL).

HERE TABLES 3 AND 4
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The results reported in Table 3 confirm that in the context of QTL mapping BIC performs
better than other model selection criteria. However even this criterion has a strong tendency to
overestimate the number of QTL when the search is done over entire genome.

Results reported in Tables 2, 3 and 4 show that the tendency to overestimate QTL number
by all model selection criteria rapidly increases when we increase the part of the genome we are
searching. For example the model 1 (no QTL) is appropriately detected by BIC in 85 % of cases
when we consider only 5 markers, in 53% of cases when we search over 1 chromosome and in 0%
of cases when we search over entire genome. Also the probability of appropriately detecting the
model 2 (one QTL) by BIC falls from 83% when we consider five markers, to 73% when we search
over one chromosome and to 0% when we search over entire genome. Instead of models 1 and 2,
more complicated models 3, 4 and 5 are usually chosen.

To explain this property of model selection criteria we observe that the number of available
models involving two markers increases with the size of the part of the genome we are searching
much quicker than the number of models involving one marker. For example when we search
over one chromosome we need to consider 11 models with one marker involved and 4(121) =220
models with two markers involved. Thus the number of possible models involving two markers is
twenty times larger than the number of models involving one marker. When we search over ten
chromosomes the numbers of models involving one and two markers grow to 110 and 4(1;0) =23980
respectively. Thus in this case the number of available models involving two markers is 218 times
larger than the number of models involving one marker. The reported difference in proportions
between the number of models involving one and two markers explains why the models with two
markers involved are more easily chosen just by a random chance when the search is done over the
entire genome.

For a better understanding of the phenomenon of the overestimation we will briefly analyze
results reported in Table 4. In the first example we observe that when there are no QTL (model 1)
BIC and FPE4 usually wrongly choose models involving one epistatic term (model 4). To explain
this fact let us observe that models with only one epistatic term comprise almost one fourth of the
set of models under consideration. Let us also observe that the ;;enalty we pay for including one

epistatic term is the smallest possible and is equal to the penalty we pay for including one additive
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term. In the result the models with one epistatic term are very often chosen just by a chance even
when in reality there are no QTL.

When there is only one QTL (model 2) all model selection criteria usually appropriately detect
the corresponding additive term. But they also have a tendency to add to the model some additional
terms. Instead of the correct model 2 they usually choose models 3 (two additve terms) and 5 (one
additive term and epistasis), with approximately equal frequencies. To explain this phenomenon
we observe that the numbers of available models with two additive terms (model 3) and with one
additive term and epistasis (model 5) are equal and they together comprise almost one half of the
set of models under consideration. Also models of these two forms differ from the true model 2 by
just one term in the regression equation. Therefore the chances that the criterion will be minimized
by the model 3 or 5 are large and approximately equal.

The only model which is well detected by considered model selection criteria is the model
with one epistatic term. We explain this fact by reminding that the models with one epistatic term
comprise almost one fourth of the set of possible models with up to two markers involved. Therefore
the probability that an alternative model, with different number of components, will minimize one
of the considered criteria just by a chance is relatively small. We however expect that the high
probability of appropriately classifying a model with one epistatic term will rapidly decrease if we
enlarge the class of competing models by including models with three markers involved (there are
(1;0) = 215820 possible models with three additive terms).

To solve the reported overestimation problem some authors modified standard model selection
criteria by increasing the penalty for the growing dimension. This solution was chosen e.g. by
Broman and Speed (2002). Also Nakamichi et al. (2001) increase the penalty in Akaike criterion
by treating a location of a QTL as an extra parameter in the model. Methods of Broman and
Speed (2002) and Nakamichi et al. (2001) were tested in the situation when the class of competing
models consisted of models with only additive terms. They however do not generalize directly to
the models with interactions, which require a special treatment. (Our simulations suggest that
to balance the big difference in numbers between epistatic and additive terms the penalty for the
interaction should be larger than the penalty for the additive term.)

In Bogdan et al. (2003) the phenomenon of the overestimation of the number of QTL by BIC is
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explained by recalling Bayesian origin of this criterion. It is observed that while approximating the
Bayesian rule for the choice of the optimal model BIC neglects the prior probabilities of different
models, which corresponds to assigning the same prior probability to all considered models. While
in many applications this approach is well justified, in the context of QTL mapping it lends itself to
assigning unrealistically high prior probabilities to the events where many regressors are involved
(e.g., when 200 markers are available, the number of different models involving 100 additive terms
is equal to (230) ~ 9.05 * 10°® and the prior probability of the event that there are 100 regressors
involved is over 10°® times larger than the prior probability of the event that there is just one
regressor). This explains the phenomenon of the overestimation and suggests that the properties

of BIC can be improved by supplementing it with a more realistic prior distribution 7 on the set

of possible models and maximizing the expression
Sy = Sy +1logn(M) (9)

where Sy is given by (4).

The idea of incorporating the prior information into BIC was already suggested by Ball (2001)
who uses ™ to approximate the posterior probability of the model M. Ball (2001) uses his
method to search through the class of models with additive terms and estimate locations of QTL
with additive effects. Bogdan et al. (2003) extend the approach and propose the modification of
BIC which allows to search through the class of models with interactions. The choice of the prior
proposed in Bogdan et al. (2003) implies that the penalty for the model dimension in the resulting
criterion increases with the number of available markers and that interactions are penalized more
than the additive terms. Extensive computer simulations reported in Bogdan et al. (2003) show
that the modified version of BIC deals very well with the problem of the overfitting the model and

in many situations allows the location of both additive and epistatic QTL.

DISCUSSION

Examples reported in this paper demonstrate that multiple interval mapping (MIM), based on the
appropriate regression model, allows for precise localization of multiple interacting QTL. The main

difficulty in using MIM relies however on the choice of the appropriate model. We showed that
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the popular statistical model selection criteria have a tendency to choose models with too many
QTL and argued that this problem can be solved by using Schwarz Bayesian Information Criterion
supplemented with a realistic prior distribution on the number of terms in the fitted regression
model.

The idea of using Bayesian methodology for QTL mapping is not new. In a series of papers
Satagopan et al. (1996), Satagopan and Yandell (1996), Heath (1997), Uimari and Hoeschele
(1997), Stephens and Fisch (1998), Silanpi& and Arjas (1998) and Yi and Xu (2000) use the full
Bayesian approach and Markov Chain Monte Carlo simulations to estimate posterior distributions
of QTL locations and other parameters in the regression model. This approach requires multiple
generations of all parameters and is very much computationally demanding. Moreover, as noted
by Ball (2001), ” a major challenge remains to obtain a rapidly converging sampler for the full
Bayesian model”. A simplified version of Bayesian approach to the problem of QTL mapping was
proposed by Berry (1998) and Sen and Churchill (2001). In particular Berry (1998) obtains the
approximation to the posterior distribution of QTL locations by representing it as a step function,
using a first order approximation to the likelihood and integrating out parameters of the regression
model. This makes it possible to construct a Gibbs sampler over the net of possible locations,
obviating generations of other parameters. Sen and Churchill (2001) avoid using MCMC and
employ independent sample Monte Carlo approach to generate multiple versions of pseudomarker
genotypes on the dense grid of genomic locations. In the next step they compute weights for each
pseudomarker realization by integrating out parameters of the related regression models and use
them to approximate the posterior distribution of the QTL locations. The methods of Ball (2001),
Broman and Speed (2002) and Bogdan et al. (2003), who restrict the search to marker positions
and use modified versions of BIC, can be seen as further simplifications of standard Bayesian
methodology, which are particularly useful when we search over a large space of possible models
with interactions.

However, even when we use the simplified approach and restrict the search to markers positions,
the exhaustive search over a huge space of possible multiple regression models is unfeasible. To
solve this problem Broman (1997) and Bogdan et al. (2003) use the forward selection procedure

to construct the nested sequence of “interesting” models. The results of simulations reported in
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Broman (1997), Broman and Speed (2002) and Bogdan et al. (2003) show that though this simple
procedure works very well, in some cases it has a tendency to include extraneous variables into the
model. Broman and Speed (2002) report that when the search is done over models with additive
terms this can be improved by using a random search procedure based on an efficient MCMC
sampler proposed in Smith (1996). The method used by Broman and Speed (2002) is one of many
available random search methods which can be applied to traverse the space of possible multiple
regression models. In the Bayesian setting such procedures were proposed e.g. by Raftery et al.
(1997, Sec. 4.2), who also construct a suitable MCMC sampler or Berger and Molina (2002). On
the contrary to the full Bayesian approach these methods directly search through the model space,
obviating the generation of regression parameters. There exist also many discrete optimization
procedures which can be used to search for the best regression model. Among the most promising
are genetic algorithms (see e.g. Goldberg, 1989), simulated annealing (Kirkpatrick et al., 1983 ,
for an application for multiple regression see Brown et al., 1999), tabu search (Glover, 1989a,b) or
ant colony optimization (see e.g. Dorigo and Di Caro, 1999). We believe that further research on
the application of these methods in the context of QTL mapping will result in numerically feasible
and accurate procedures for the estimation of QTL number and simultaneous location of multiple
interacting QTL.
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Table 1: Specification of models with up to two QTL involved. Indicators «y; are as in the definition

of the model (8).

id model Vi Y2 | s
no QTL
1 QTL

2 QTL with only additive effects

only epistatic term

1 additive effect 4 epistatic term

S U W N
[ T« I e =
- o o = o O
e e R B o B e B e

2 additive effects + epistatic term
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Table 2: Percentage of replicates for which specific models were chosen when the search was per-
formed over one 40 ¢cM chromosome. In the column labeled ‘Correct’ we give the percentage of
replicates for which both the model and QTL locations were correctly identified. ‘id’ is the model

identificator as specified in Table 1.

Chosen model id
True model id | Criteria | 1 | 2 | 3 [ 4 | 5 | 6 | Correct
BIC {8 |21 1[12]0 |0 85
1 AIC 25| 6 |14 (44 9 |2 25
FPE4 (67| 8 |6 {190 |0 67
BIC 1186 0|4]0 83
2 AIC 1 (31250 (36]|7 31
FPE4 [ 1 |68|15} 0 |16|0 64
BIC 21010719310 90
4 AIC 000 71(23]|6 67
FPE4 | 1 0| 0|91 7 1 85
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Table 3: Percentage of replicates for which specific models were chosen when the search was per-
formed over one 100 cM chromosome. In the column labeled ‘Correct’ we give the percentage of
replicates for which both the model and QTL locations were correctly identified. ‘id’ is the model

identificator as specified in Table 1.

Chosen model id
True model id | Criteria | 1 [ 2 | 3 | 4 | 5 | 6 | Correct
BIC {58333 (40|10 53
1 AIC 112 (18|53 (22| 4 1
FPE4 |26 | 5 | 7 |57 5|0 26
BIC 0 |73]|15|0|12|0 73
2 AIC 0 |10{40]| 0 {3713 10
FPE4 | 0 | 5820 0 (20} 2 58
BIC 010019820 91
4 AIC 0|00 |71|25| 4 67
FPE4 | 0100|991 85
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Table 4: Percentage of replicates for which specific models were chosen when the search was per-
formed over ten 100 cM chromosomes. In the column labeled ‘Correct’ we give the percentage of
replicates for which both the model and QTL locations were correctly identified. ‘id’ is the model

identificator as specified in Table 1.

Chosen model id
True model id | Criteria [ 1| 2| 3 | 4 | 5 | 6 | Correct
BIC (00! 3 {8 |17| 0 0
1 AIC |0|0| 8 404210 0
FPE4 {0{0| 5 756|117 3 0
BIC |0|0|48|10142] 0 0
2 AIC |0|0|36| 0 |34]|30 0
FPE4 [ 0|0 |46 | 4 [ 48] 2 0
BIC (0f0]|1194]5 |0 68
4 AIC |0|0] 3 |54|34]| 9 42
FPE4 |0(0) 317917 |1 60
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Figure 1: Plots of lod score functions resulting from one and two dimensional interval mapping for
the first set of simulated data. Two QTL are located at 24 cM and 56 cM. The trait data were
generated according to the model (1) with parameters y =0, a; = 1.5, a2 = 1.25 and ¢ = 1. The

maxima, of the lod score functions are obtained at 24 ¢cM and (24 c¢M, 61 ¢cM) correspondingly.
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Figure 2: Plots of lod score functions resulting from one and two dimensional interval mapping for
the second set of simulated data. Two QTL are located at 24 ¢cM and 56 cM. The trait data were
generated according to the model (1) with parameters 4 =0, a; = 1.25, ap = 1.25 and 0 = 1. The

maxima of the lod score functions are obtained at 35 ¢M and (25 c¢M, 54 ¢cM) correspondingly.

Two dimensional interval mapping

304

One dimensional interval mapping

25 T v T

25

n
o
i

R
\\\\\\&\\\\\\\\ |
A

T
W

Lod score
-
w
1

\ L . 1 T T
o 20 40 50 80 100 10 80 60 40 20 100
Position in cM Position of the first QTL

0

50
Position of the second QTL

28




Figure 3: Plots of lod score functions resulting from one and two dimensional interval mapping for
the third set of simulated data. Two QTL are located at 24 cM and 56 cM. The trait data were
generated according to the model (3) with parameters 41 =0, a; =0,a2 =0, a3 =4 and ¢ = 1.
The maximum of the lod score statistic resulting from one dimensional interval mapping is below
the threshold to detect the QTL presence. The maximum of the lod score statistic resulting from

two dimensional interval mapping is obtained at (26 cM, 55 cM).
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