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Abstract

The evolving role of randomization in Bayesian Analysis as well as arguments for and

against randomization is discussed. We note that Bayesian Analysis is moving towards a

substantially reduced role for randomization, but it is a sample surveys area where more

future work of this kind is needed.

1. Introduction

We provide a relatively non-technical overview of how the Bayesian approach to ran-

domization has changed over time. The overview depends primarily on the cited papers

of Basu (1988), Kadane and Seidenfeld (1999), Rubin (1978) and some extracts from Sav-

age, quoted in Kadane and Seidenfeld (1999). These references are supplemented by more

recent papers of Berry (2004) and Spiegelhalter (2004).

Most of the paper deals with the role of randomization in Bayesian analysis of clin-

ical trials (section 5), but there is some discussion of random samples (section 4) and

randomization tests (section 3). Section 6 contains concluding remarks.

2. Bayesian Views on Randomization – An Imaginary Conversation

We present an imaginary conversation by suitably arranging written views of the dis-

tinguished Bayesians mentioned in the Introduction. For example, the first two paragraphs

below are from Savage (1961,1962), quoted at the beginning of the cited article of Kadane

and Seidenfeld(1999).

Savage: “Applying the theory (of personal probability) naively one quickly comes to

the conclusion that randomization is without value for statistics. This conclusion does not

sound right...

The need for randomization presumably lies in the imperfection of actual people and,
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perhaps, in the fact that more than one person is ordinarily concerned with an investiga-

tion.”

Basu: “The mere artifact of randomization cannot generate any information that

is not there already. However, in survey practice situations will arise where it will be

necessary to insist upon a random sample. But this will be only to safeguard against some

unknown biases.

The inner consistency of the Bayesian point of view is granted...(But) who can be a

true Bayesian and live with thousands of parameters. Survey statistics is more an art than

a science.”

Kadane and Seidenfeld: “Many have criticized randomization analysis for failing the

likelihood principle: see Basu (1981). This reply to Fisher, Kempthorne and others, who

defend randomization analysis, is we think, what Savage means by the “naive” Bayesian

rejection of randomization.... When only one decision maker is relevant we would not

randomize.”

After considering Bayesian alternatives to randomization, Kadane and Seidenfeld go

on to observe: “Thus even a sophisticated (rather than naive) Bayesian defense of ran-

domization....fails to establish it as a sine qua non of sound experimental methods.”

Rubin: “Classical randomized designs stand out as especially appealing mechanisms

designed to make inference for causal effects straightforward by limiting the sensitivity of

a valid Bayesian Analysis.”

Kadane and Seidenfeld: “Randomization is one way to accomplish this but it is not

unique in having the virtue. We join with Savage and many others, however, in his respect

for randomization as a statistical tool for enhancing interpersonal communication.”

At first reading there seems to be major differences. A second or third reading of

the original papers shows a basic unity along with important differences. As Kadane and

Seidenfeld (1999) point out, there are two kinds of experiments - experiments to learn and

experiments to prove. The second kind of experiment involves at least two decision makers,

of which one is the Bayesian who designed the experiment and analyzed the data and the

other represents other Bayesians who have to be convinced. There, i.e, in the second set
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of experiments, randomization helps ensure trust in the analysis. Most Bayesians would

agree with the sophisticated view expressed by Kadane and Seidenfeld (1999) in the last

two extracts from their paper.

This paper is about learning - my learning. It’s not a paper to prove. Hopefully, it

will help other Bayesians who haven’t made up their mind about randomization but would

like to do so.

We explore these basic issues in some more detail below.

3. Randomization and Permutation Tests

Randomization appears in classical inference and design of experiment – either to

reduce the effect of unknown biases by some form of averaging over randomizations or to

justify permutation tests by introducing exchangeability. Randomization also appears in

classical inference via devices like randomized tests.

While the idea of using randomization to cope with unknown biases seems reasonable,

each of the other two applications is contrary to principles of Bayesian Analysis with a

single decision maker. The single decision maker is supposed to maximize his posterior

expectation of utility. He may, but need not, randomize if two or more actions are optimal.

If randomization is used at the design stage, it violates the likelihood principle since

the likelihood is the same no matter what randomization is used at the design stage to

draw a sample from a population or allocate different treatments to different sampling

units. In particular, randomization will not have any effect on the posterior. Therefore

any method of analysis, in which randomization plays an important role, can’t be based

solely on likelihood or posterior. We examine below the logical difficulties associated with

such tests. Logical difficulties arise from the fact that certain observed or observable

quantities are ignored even though they may contain relevant information.

We consider Example B of Kadane and Seidenfeld (1999) on the permutation t-test

for the difference of means of two normal populations with possibly unequal variances. Let

(xi,yi), i = 1, 2 . . . , n, be n observations. Use a random permutation of y’s to generate data

with a new pairing, (xi, yji
), i = 1, 2 . . . , n. The differences {zi = (xi − yji

), i = 1, 2 . . . , n}
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are equally likely over the permutations. Let

t =
√

(n − 1)z̄/Sz,

S2
z =

n
∑

1

(zi − z̄)2/(n − 1).

For large n, the permutation distribution of t is approximately N(0,1) under the null

hypothesis of same mean of X and Y . When we use this distribution obtained by averaging

over n! permutations, we ignore the random pairing and hence, Sz, which are not ancillary

and contain information.

Kadane and Seidenfeld show how odd the argument is by examining the case of n = 2.

There are only two values of the t-statistic since n! = 2. The values are

[(x1 + x2) − (y1 + y2)]/[|x1 − x2| − |y1 − y2|]

and

[(x1 + x2) − (y1 + y2)]/[|x1 − x2| + |y1 − y2|].

It is clear that the first value of |t| is larger, i.e, more significant because of the

smaller value of the ignored Sz in the denominator of t. On the other hand, the conditional

distribution of t given Sz is degenerate. Thus the permutation t distribution has an unclear

logical status. Similar objections apply to permutation t or F tests for randomized block

experiments. None of these are acceptable to a Bayesian.

A second way in which randomization may enter analysis is via a randomized deci-

sion function which, given data, puts a probability distribution over the space of actions

and chooses an action at random. This would be acceptable to a Bayesian only if this

distribution sits on actions that minimize the posterior risk.

4. Randomization and Sample Surveys

Random sampling from a finite population with or without replacement, is supposed

to ensure exchangeability of xi’s that are sampled (and hence seen) and remaining xi’s

that are not sampled (and hence not seen). Exchangeability leads to a natural estimate

of population total, based on the assumption that the mean of the unseen xi’s can be
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estimated by the mean of seen xi’s,

∑

i∈ sample

xi +





1

n

∑

i∈ sample

xi



 (N − n) = Nx̄

Here N − n = number of unseen units.

The catch here is that labels of the units are ignored. If labels are not ignored

exchangeability doesn’t hold.

Even more difficult to justify are pps (probability proportional to size) sampling de-

signs and the corresponding Horvitz-Thomson (HT) estimate, which are routinely used

but remain repugnant to a Bayesian. The HT estimate for the population total is
n

∑

i=1

xi/pi

where pi = probability of choosing the ith unit. In case pi = 1
n

this reduces to the estimate

for random samples with equal probability. Basu (1988) presents a hilarious example of

how absurd the estimate can be if the pi’s are poorly chosen. Basu’s Circus Example: A

circus owner wants a rough estimate of the total weight of fifty adult elephants. He chooses

Sambo as typical (based on past measurements), measures Sambo’s current weight and

multiplies by fifty. That is his estimate.

The circus statistician is “horrified” by this ad hoc estimate. He chooses a sampling

plan “that allots a selection probability 99/100 to Sambo and 1/4900 to the rest.” The

object is to choose Sambo with a high probability and yet have a valid estimate of vari-

ance. Naturally, Sambo is selected and the statistician produces the HT estimate, namely,

(Sambo’s weight) which is approximately about (1/50)th of the owner’s rough estimate.

(You should read Basu’s own description of the problem.) This is a clever example of

an unbiased estimate with a very large variance. So even a classical statistician would

be shocked. Basu seems to be saying that this is what would often happen if one uses a

sampling design with unequal probabilities. If a random sample with equal probabilities

were used, the result would still be bad compared with the owner’s common sense estimate

but not as absurd as above.

The common sense estimate makes sense to a subjectivist Bayesian. He too may

want to choose Sambo as typical, based on the prior information consisting of the past

5



measurements. But what would be a simple, generally applicable Bayesian procedure for

drawing a sample based on available information? What would be a Bayes estimate for the

population total and an estimate of its variance? The parametric super population based

approaches have not survived competition with the design based approaches. It’s possible

that one needs to be a nonparametric Bayesian, even in these relatively simple examples,

i.e, sampling problems with small sample size.

We consider another simple example to indicate that we seem to lack simple Bayesian

alternatives to randomization.

A Presidential candidate in the U.S. wants an estimate of the proportion of voters

who will vote for him. This is an experiment to learn, the usual sample size is small (1000

to 1200). Can a Bayesian do better than a simple random sample?

If the sample size is quite large, one ought to be able to come up with good Bayesian

nonparametric answers. But I haven’t seen any.

5. Bayesian Approach to Clinical Trials with or without Randomization

Most of this section is based on Rubin (1978) and Kadane and Seidenfeld (1999).

Rubin assumes there is a target population and the data arise by random sampling from

the target population and random experiment of treatments (as in a randomized block

assignment).

Rubin notes that “intuitively the causal effect of one treatment relative to another

for a particular experimental unit is the difference between the result, if instead, the unit

had been exposed to a second treatment.” Clearly, both observed and unobserved random

variables are relevant.

Clinical trials are experiments to prove, with various groups, namely, the statisticians,

doctors and FDA, who are to be convinced by the study undertaken by the pharmaceutical

company. In addition, there are ethical concerns relating to patients.
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Data Table

Covariate (X) Which Treatment (W ) Post-Treatment Value (Y )

1. (X11, X01) W1 Y11, . . . , YT1

2. (X02, X02) W2 Y12, . . . , YT2

...

N. . . .

Here,

X11 = observed part of x for first unit.

X01 = unobserved part of x for first unit.

Y11 = value of Y if unit 1 gets the first treatment.

YT1 = value of Y if unit 1 gets the T th treatment.

N = # units in target population.

Wi = 0 indicates ith unit was not selected and so not exposed to any treatment.

Wi = t indicates ith unit was selected and exposed to treatment t.

For the ith unit with Wi = t, (Y1i, . . . , Yt−1,i , Yt+1,i , . . .) = unobserved
(

Y(0)

)

, Yti =

observed
(

Y(1)

)

.

Model for data:
(

X(1), Y(1), W
)

are observed random vectors.
(

X(0), Y(0)

)

are unobserved random

vectors. Joint density is:

f(X, Y |Π)k(W |X, Y, Π)

where Π is what Rubin calls parameters in the model, the factor k models assignment and

the first factor is:

f(X, Y |Π) =

n
∏

i=1

f(Xi, Yi|Π)

The object is to make inference on Π.
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Definition: The assignment mechanism k(W |X, Y, Π) is ignorable if k depends on

(X, Y, Π) only through the observed part
(

X(1), Y(1)

)

.

Rubin remarks as follows, “The more involved the assignment mechanism, the more

complex must be the recording mechanism if the assignment mechanism is to be ignorable”.

Ignorability has an important implication. In general, i.e, without ignorability,

P{Y(0)|X(1), Y(1), W} =

∫ ∫

k(W |X, Y, Π)f(X, Y |Π)p(Π)dΠdX(0)
∫ ∫ ∫

k(W |X, Y, Π)f(X, Y |Π)f(X, Y |Π)p(Π)dΠdX(0)dY(0)
.

Under ignorability the factor “k” comes out of the integrals in the numerator and

denominator and so gets canceled. This implies k(W |X, Y, Π) need not be modeled.

We can now list the advantages of randomization as suggested by Rubin.

1. It leads to ignorable k. Thus k need not be modeled, nor would one have to model

unobserved values in terms of observed values. This makes the Bayesian analysis

robust.

2. It “yields data having more than one treatment condition for any distinct value

of covariate.” This also implies robustness. Rubin points out if two units with iden-

tical X(1) represent two treatments, then randomization must have been used. This

allows balancing of covariates for different treatments and hence achieves robustness

in modeling effect of covariates.

Various ignorable alternatives to randomization have been suggested in recent years.

One of these, due to Kadane and Sedransk, has been discussed by doctors, lawyers, and

philosophers and implemented at Johns Hopkins, vide Kadane (1996) and Kadane and

Seidenfeld (1999). The main features are summarized below.

1. Appoint a small number of experts on the disease and treatments.

2. The group chooses a single indicator of outcome “of most reasonably of concern to

a patient.”

3. The group agrees on a few diagnostic variables.

4. Each expert’s opinion is elected as a dynamic probabilistic function A(3) about the
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outcome indicator. This may involve modeling.

5. Based on (4), each expert has a preferred treatment as a function of the diagnostic

variables. Given the values of these variables, determine the preferred treatments and

choose one at random.

This is ignorable and more ethical than randomization. Also it would not be easy to

deviate from this protocol. As observed by Kadane and Seidenfeld (1999), “The desire that

the analysis of an experiment not involve a judgement of the motivation of the experimenter

seems natural for science. . . .This consideration independent of the prior and the utility

function of the experimenter can be conducted under any design that puts the experiment

on “automatic pilot” once it is started . . . Randomization is one way to accomplish this

but it is not unique in having this virtue.”

Can such protocols yield data which are as robust as those arising from experiments

with randomization? Berry (2004) argues with considerable theoretical, and numerical

evidence that we learn just as much. Of course, it would be good to subject real data

from new studies to critical evaluation. Berry also points out that ethical considerations

for patients may increase the number of volunteers and thus lead to more reliable studies.

Apparently, FDA has accepted some Bayesian recommendations. Other studies of the

same kind include Spiegelhalter(2004), who explores many other aspects of health care and

Christen et al. (2004), who provide the technical details for an implementable Bayesian

protocol.

6. Concluding Remarks

Our review focuses on three applications of randomization – permutation tests, clinical

trials and sample surveys, – all of which disturb Bayesians. The first of these, namely,

permutation tests are simple, but the simplicity comes with a price, one has to ignore part

of the information. The second application, namely, clinical trials seem to be moving away

from randomization to well planned, ethical, but more complex alternatives. In the case of

the third application of randomization, namely, design based sample surveys, Basu(1988)

had pointed out various logical difficulties. However, except for the use of post-sampling

stratification, small area estimation and ingenious similar ideas, the basic philosophical

structure of survey sampling has not apparently changed much, see, for example, Rao(1999)
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and Ghosh (1999). This remains a promising area neglected by Bayesians.
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