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Abstract 

Consider the standard Gaussian nonparametric regression problem. 

The observations are (xi, yi) where 

and where ~i are iid with finite fourth moment p4 < oo. This article 

presents a class of difference-based kernel estimators for the variance 
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function V. Optimal convergence rates that are uniform over broad 

functional classes and bandwidths are fully characterized, and asymp- 

totic normality is also established. We also show that for suitable 

asymptotic formulations our estimators achieve the minimax rate. 



1 Introduction 

Let us consider the following non-parametric regression problem 

~i =9(xi)  + Jm~i, i = 1 , .  . . , n  ( I )  

where g(x) is an unknown mean function, the errors Ei are iid with mean zero, 

variance 1 and the finite fourth moment p4 < oo while the design is fixed. We 

assume that m a ~ { x ~ + ~  -xi) = O(n-l) for Vi = 0' . . . , n. Also, the usual con- 

vention xo = 0 and x,+l = 1 applies. The problem we are interested in is es- 

timating the variance V(x) when the mean g(x) is unknown. In other words, 

the mean g(x) plays the role of a nuisance parameter. The problem of vari- 

ance estimation in nonparametric regression was first seriously considered in 

the 1980's. The practical importance of this problem has been also amply il- 

lustrated. It is needed to construct a confidence band for any mean function 

estimate (see, e.g. Hart (1997), Chapter 4). I t  is of interest in confidence 

interval determination for turbulence modelling (Ruppert et al. 1997)' fi- 

nancial time series (Hardle and Tsybakov (1997), Fan and Yao (1998)), co- 

variance structure estimation of the nonstationary longitudinal data (see, 

for example, Diggle and Verbyla (1998)), estimating correlation structure 

of the heteroscedastic spatial data (Opsomer et al. 1999), nonparametric 

regression with lognormal errors as discussed in (Brown et al. 2005) and 

Shen and Brown (2006)' and many other problems. 

In what follows we describe in greater detail the history of a particular 

approach to the problem. von Neumann (1941), von Neumann (1942), and 

then Rice (1984) considered the special, homoscedastic situation in which 

V(x) - a2 in the model (1). They proposed relatively simple estimators of 



the following form: 

The next logical step was made in Gasser et al. (1986) where three neigh- 

boring points were used to estimate the variance: 

A further general step was made in Hall, Kay, and Titterington (1990). 

The following definition is needed first. 

Definition 1.1. Let us consider a sequence of numbers {di);=o such that 

while 

Such a sequence is called a difference sequence of order r .  

For example, when r = 1, we have do = 1, d l  = -do which defines the d'3 
Yi-Yz-l first difference AY = - d'3 . The estimator of Hall, Kay and Titterington 

(1990) estimator can be defined as 

The conditions (4) and (5) are meant to insure the unbiasedness of the 

estimator (6) when g is constant and also the identifiability of the sequence 



A different direction was taken in Hall and Carroll (1989) and 

Hall and Marron (1990) where the variance was estimated as an average of 

squared residuals from a fit to g; for other work on constant variance es- 

timation, see also Buckley et al. (1988), Buckley and Eagleson (1989), and 

Carter and Eagleson (1992). 

The difference sequence idea introduced by Hall, Kay and Titterington 

(see Hall, Kay, and Titterington (1990)) can be modified to the case of a 

nonconstant variance function V(x). As a rule, the average of squared dif- 

ferences of observations has to be localized in one way or another - for 

example, by using the nearest neighbor average, spline approach or lo- 

cal polynomial regression. The first to try to generalize it in this way 

were probably Muller and Stadtmuller (1987). It was further developed in 

Hall, Kay, and Titterington (1990), Muller and Stadtmuller (1993), Seifert et al. (1993), 

Dette, Munk, and Wagner (1998), and many others. An interesting appli- 

cation of this type of variance function estimator for the purpose of testing 

the functional form of the given regression model is given in Dette (2002). 

Another possible route to estimating the variance function V(x) is to 

use the local average of the squared residuals from the estimation of g(x). 

One of the first applications of this principle was in Hall and Carroll (1989). 

A closely related estimator was also considered earlier in Carroll (1982) and 

Matloff, Rose, and Tai (1984). This approach has also been considered in 

Fan and Yao (1998). 

Some of the latest work in the area of variance estimation includes at- 

tempts to derive methods that are suitable for the case where X E 7Zd for 

d > 1; see, for example, Spokoiny (2002) for generalization of the residual- 



based method and Munk, Bissantz, Wagner, and Freitag (2005) for general- 

ization of the difference-based method. 

The present research describes a class of nonparametric variance esti- 

mators based on difference sequences and local polynomial estimation, and 

investigates their asymptotic behavior. Section 2 introduces the estimator 

class and investigates its asymptotic rates of convergence as well as the 

choice of the optimal bandwidth. Section 3 establishes the asymptotic nor- 

mality of these estimators. Section 4 investigates the question of asymptotic 

minimaxity for our estimator class among all possible variance estimators 

for the nonparametric regression. 

2 Variance function estimators 

Consider the model (1). We begin with the following formal definition. 

Definition 2.1. A pseudoresidual of order r is 

where { d j )  is a difference sequence satisfying (4)-(5) and i = Lii + 1, . . . , n+ 

Remark 2.2. The term "pseudoresidual" has been introduced for the first 

time, probably, in Gasser, Sroka, and Jennen-Steinmetz (1986) where it was 

used in a more restricted sense. 

Remark 2.3. For r = 1 there is a unique difference sequence, up to multi- 

plication by -1 and permutation of the coordinates. It  is (f 2, ~ 2 ) .  For JZ fi 



larger r there can be many essentially different sequences. For example, for 

1 1  2 1 3 2 r = 2 the sequences (-, -, - -) and (-, - -, -) are each difference A A  A &A & A -  
sequences satisfying (4) and (5). 

Let K(. )  be a real-valued function satisfying 

1. K(u)  2 0 and is not identically zero. 

2. K(u)  is bounded: 3 M > 0 such that K(u)  5 M for Vu. 

3. K(u)  is supported on [- 1,1] and J K (u)  du = 1. 

We use the notation a; = J u2K(u) du and RK = J ~ ~ ( u )  du. Then, 

based on A , i ,  we define a variance estimator qh(x) of order r as the local 

polynomial regression estimator based on A;,i: 

where 

n+ lr /2]  -T 

(Go ,  hi, . . . , G p )  = arg min 
ao,al, . . . ,ap , C [ ~ : i - a o - a l ( x - ~ i )  z=[T/a]+l 

The value h in ( 8 )  is called the bandwidth and K is the weight function. 

It  should be clear that these estimators are unbiased under the assump- 

tion of homoscedasticity V ( x )  G a2 and constant mean g(x) G p. We begin 

with the definition of the functional class that will be used in the asymptotic 

results to follow. 

Definition 2.4. Let us define the functional class C7 as follows. Let C1 > 0, 

C2 > 0. Let us denote y' = y - Ly] where Ly] denotes the greatest integer 



less than y. We say that the function f (x) belongs to the class C, if for all 

2, 9 E 

for k = 0, .  . . , ly] - 1. Note that C, depends on the choice of Cl, C2, but 

for our convenience we omit this dependence from the notation. There are 

also similar types of dependence in the definitions that immediately follow. 

Definition 2.5. Let 6 > 0. We say the function is in class C q  if it is in C, 

and in addition 

f ( 4  2 6 (11) 

These classes of functions are familiar in the literature, as in (Fan 1992; 

Fan 1993) and are often referred to as Lipschitz balls. 

Definition 2.6. We define the pointwise risk of the variance estimator vh(x) 

(its mean squared error at a point x) as 

Definition 2.7. Let us define the global mean squared risk of the variance 

estimator vh(x) as 

1 

R(V, ph) = E (1 (ph(x) - v ( x ) ) ~  dx) . (12) 

Then, the globally optimal in the minimax sense bandwidth hopt is defined 



Note that h ,  depends on n as well as C 1 ,  C2 ,  ,B and y.  A similar definition 

applies in the setting of Definition (2.6). 

Remark 2.8. In a special case where y = 2 and ,B = 1, the finite sample per- 

formance of this estimator has been investigated in Levine (2006) together 

with the possible choice of bandwidth. A version of K-fold crossvalidation 

has been recommended as the most suitable method. When utilized, it pro- 

duces a variance estimator that in typical cases is not very sensitive to the 

choice of the mean function g ( x ) .  

Theorem 2.9. Consider the nonparametric regression problem described 

by ( I ) ,  with estimator as described i n  ( 8 ) .  Fix C 1 ,  C2, y > 0 and ,B > 

y l ( 4 y  + 2)  to define functional classes C, and Cg according to the definition 

(2.4). Assume p > Ly]. Then the optimal bandwidth is h ,  =: n-1/(2,s1). 

Let 0 < a 5 a < CQ. Then, there are constants B and B such that 

for all h satisfying 5 n1/(27+1)h - < a, uniformly for g E Cg, V E C,. 

Theorem (2.9) refers to properties of the integrated mean square error. 

Related results also hold for minimax risk at  a point. The main results are 

stated in the following theorem. 

Theorem 2.10. Consider the setting of Theorem (2.9). Let xo E ( 0 , l ) .  

Assume p > Ly]. Then the optimal bandwidth is h,(x) =: n-1/(2,+1). Let 



0 < a 5 a < oa. Then, there are constants B and B such that 

for all h(x) satisfying a 5 n'l(2~+')h < - a, uniformly for g E CD, V E C,. 

The proof of these theorems can be found in the Appendix. At this 

point, the following remarks may be helpful. 

Remark 2.11. The result stated in Theorem 2.10 is also valid when the 

bandwidth h depends on n as long as the inequality (49) in its proof remains 

valid. 

Remark 2.12. If one assumes that P = yl(4y + 2) in the definition of the 

functional class CD, the conclusions of the theorems (2.9) and (2.10) remain 

valid, but the constants B and B appearing in them become dependent on 

p. For more details see Appendix. 

Remark 2.13. Miiller and Stadtmiiller (1993) made a very significant step 

forward in the nonparametric variance estimation area by considering the 

general quadratic form based estimator similar to our (8) and deriving 

convergence rates for its mean squared error. They also were the first to 

point out an error in the paper by Hall and Carroll (1989) (see Miiller and 

Stadtmiiller (1993), pp. 214 and 221). They use a slightly different (more 

restrictive) definition of the classes C, and CD and only establish rates of con- 

vergence and error terms on those rates for fixed functions V and g within 

the classes C, and CD. Our results resemble these but we also establish the 



rates of convergence uniformly over the functional classes Co and C, and 

therefore our bounds are of the minimax type. 

Remark 2.14. It is important to notice that the asymptotic mean square 

risks in Theorems (2.9) and (2.10) can be further reduced by the proper 

choice of the difference sequence { d j ) .  The proof in the Appendix supple- 

mented with material in Hall, Kay and Titterington (1990) shows that the 

asymptotic variance of our estimators will be affected by the choice of the 

difference sequence, but the choice of this sequence does not affect the bias 

in asymptotic calculations. The effect on the asymptotic variance is to mul- 

tiply it by a constant proportional to 

For any given value of r there is a difference sequence that minimizes this 

constant. A computational algorithm for these sequences is given in Hall, 

Kay and Titterington (1990).  The resulting minimal constant as a function 

2 r +  1 C .  -- mzn - r 

Hence, increasing r from 1 to cm achieves at  most E 33% reduction in the 

asymptotic variance, and no change in the asymptotic bias term for the 

estimator. It follows that the improvement in the asymptotic risk is bounded 

by this same factor of 33%. Most of this reduction occurs via an increase of 

r from 1 to a moderate value such as r = 3 or 4. 



3 Asymptotic Normality 

As a next step, we establish that the estimator (8) is asymptotically normal. 

To do this, an additional insight into the nature of the estimator (8) is 

useful. Note that, in order to define (8)) we define squared pseudoresiduals 

first and then smooth them locally to produce the kernel variance estimator. 

It  is important to recall here that the local polynomial regression estimator 

Qh(x) can be represented as 

2-1. where Kn ;h ,x (~ i )  = Kn,X (T). Here Kn,, (y) can be thought of as 

a centered and rescaled local kernel function whose shape depends on the 

location of design points xi, the point of estimation x and the number of ob- 

servations n. Also, it is not usually non-negative the way the original kernel 

K(.)  is. We know that K,,, (y )  satisfies discrete moment conditions: 

for any q = 1 , .  . . , p. We also need the fact that the support of Kn(.)  is 

contained in the one of K(.);  in other words, Kn(.)  = 0 whenever Ixi-xl > h. 

For more details see e.g. Fan and Gijbels (1995). Properties (18)-(19) are 

also needed to prove Theorems (2.9) and (2.10) (see Appendix). Now, we 

can state the following result. 



Theorem 3.1. Consider the  nonparametric regression problem described by 

(I) ,  with estimator as described in (8). W e  assume that the  functions g(x) 

and V(x) are continuous for any  x E [O,1] and V i s  bounded away from 

zero. Assume p4+, = E < oo for a small v > 0. Then ,  as h + 0, 

n + oo and nh + oo, we find that 

i s  asymptotically normal wi th  mean  zero and variance a2 where 0 < a2 < oo. 

Proof. To prove this result, we rely on CLT for partial sums of a gener- 

alized linear process 
n 

where Ji is a mixing sequence. This and several similar results were estab- 

lished in Peligrad and Utev (1997). Recalling the representation (17), we 

observe that our estimator (8) can be easily represented in the form (21) 

with Kn ;h ,x (~ i )  as a n i  Thus, we only need to verify the conditions of, say, 

their Theorem 2.2 (c). We will be checking these conditions one by one. 

The first condition is 

max lanil + 0 lsisn (22) 

as n + oo. In our notation, it can be expressed as 

max 
17-12] +lli<n+ 17-12] -7- 

IKn;h,x(xi) 1 + 0 

as n + oo, h + 0 and nh + oo uniformly for all x E [0, I.]. To achieve 

this, it is enough to notice that 



uniformly for all x E [0, 11. 

The second condition is 

In our notation it is 

From (24) and the Cauchy-Schwartz inequality we easily deduce that 
n+ Lr/2J -r 

C ( K ~ ; ~ , , ( x ~ ) ) ~  = 0 (&) and therefore (25) is true. 
i=[r/ZJ+l 

Now we need to establish uniform integrability of ,$ = A:,i. TO do this, 

we use a simple criterion mentioned in Shiryaev (1995) that requires 

existence of the non-negative, monotonically increasing function G ( t ) ,  

defined for t 2 0, such that 

G ( t )  lim - = co 
t-co t 

and 

sup E [ G ( A ~ ~ ) ]  < M. 
i 

G(t )  4+v Indeed, choosing G ( t )  = tV we have lim = M and sup E ) < t-co i 

M; therefore, Shiryaev's conditions are true and the sequence 

is uniformly integrable. 

The remaining three conditions of Peligrad and Utev (1997) are almost 

trivial. First, the sequence {A:,i) is clearly strongly mixing as it is a 

measurable function of an iid sequence ~ i .  Second, inf var A:,i > 0 as 
Z 



the variance function V(.) is bounded from below. Finally, the last 

condition requires that xi i2/pa(i) < co for some p > 0 where a ( i )  

is a mixing coefficient of the sequence Indeed, since is an 

r-dependent sequence, the mixing coefficient a ( i )  is zero for any n > r .  

Thus, it is automatically true that x i2l6ai < 0 for.any 6 > 0. 
2 

4 Asymptotic minimaxity and related issues 

Lower bounds on the asymptotic minimax rate for estimating a nonpara- 

metric variance in formulations related to that in (1) have occasionally 

been studied in earlier literature. Two papers seem particularly relevant. 

Munk and Ruymgaart (2002) study a different, but related problem. Their 

paper contains a lower bound on the asymptotic minimax risk for their set- 

ting. In particular, their setting involves a problem with random design, 

rather than the fixed design case in (1). Their proof uses van Trees inequal- 

ity and relies heavily on the fact that their (X,, Y,) pairs are independent 

and identically distributed. While it may well be possible to do so, it is not 

immediately evident how to modify their argument to apply to the setting 

(1). 

Hall and Carroll (1989) consider a setting similar to  ours. Their equa- 

tion (2.13) claims (in our notation) that there is a constant K > 0, possibly 

depending on C1, C2, P such that for any estimator V 
2 -40  

SU~{R(V(XO),  V(x0)) : V E C,, g E Cp) 2 K max{n2r+l, nzp+l). (27) 

Note that n-2,/(2,+1) = ~ ( n - ~ p / ( ~ P + l ) )  for P < 7/(27 + 2). I t  thus follows 

from (14) in our Theorem (2.10) that for any y/(47 + 2) < P < 7/(27 + 2) 



and n sufficiently large 

3 - 48  

sup{R(V(xo), ph, (xo)) : V E C?, g E Cp) <<< K max{nzr+l , nzp+l) (28) 

where h, is yet again the optimal bandwidth. This contradicts the assertion 

in Hall and Carroll (1989), and shows that their assertion (2.13) is an error 

- as is the argument supporting it that follows ((2.3) of their article. For a 

similar commentary see also Miiller and Stadtmiiller (1993). Because of this 

contradiction it is necessary to give an independent statement and proof of 

a lower bound for the minimax risk. That is the goal of this section, where 

we treat the case in which P > yl(4y + 2). The minimax lower bound for 

the case in which P < yl(4y + 2) requires different methods which are more 

sophisticated. That case, as well as some further generalizations have been 

treated in Wang, Brown, Cai and Levine (2006) as a sequel to the present 

paper. That paper proves rate-wise sharp lower and upper bounds for the 

case where p < yl(4y + 2). 

We have treated both mean squared error at a point (in theorem (2.10)) 

and integrated mean squared error (in theorem (2.9)). Correspondingly, we 

provide statements of lower bounds on the minimax rate for each of these 

cases. Both results are obtained under the assumption of normality of errors 

~i which enables us to use Hellinger distance-based results. See Section 2 

for the definition of R, and other quantities that appear in the following 

statements. 

Theorem 4.1. Consider the nonparametric regression problem described by 

(1). Fix C1, C2, p and y t o  define functional classes C?, Cp according t o  

(2.4). Also assume that ~i N N(0 , l )  and independent. T h e n  there is  a 



constant K > 0 such that 

inf {sup{R(V, v) : V t C:, g t Cp) : v) t ~ n - ~ ~ ~ ( ~ ~ + ~ )  (29) 

where the inf is taken over all possible estimators of the variance function 

v .  

Our argument relies on the so-called "two-point" argument, introduced 

and extensively analyzed in Donoho and Liu (1990,1991). 

Theorem 4.2. Consider the nonparametric regression problem described by 

(1). Fix C1, C2, ,B and y to  define functional classes C,, Cp according to  

(2.4). Also assume that ~i N N(0, l )  and independent. Then there is a 

constant K > 0 such that 

where the inf is taken over all possible estimators of the variance function 

v. 

Proof of Theorem 4.2 It is easier to begin with the proof of theorem 

(4.2) and then proceed to the proof of theorem (4.1). We will use a two- 

point modulus-of-continuity argument to establish the lower bound. Such 

an argument was pioneered by Donoho and Liu (1990, 1991) for a different, 

though related, problem. See also Hall and Carroll (1989) and Fan (1993). 

Define the function 



Assume (for convenience only) that C1 > 2. Let d be a constant satisfy- 

ing 0 < d < C2 and let 

Then fE,*l E Cy for 6 > 0 sufficiently small. Let H denote the Hellinger 

distance between densities: that is, for any two probability densities ml,mz 

dominated by a measure p(dz) 

Here are two basic facts about this metric that will be used below. If Z = 

{Zj : j - 1,. . . , n) where the Zj are independent with densities {mkj : j = 

1 , .  . . , n), k = 1,2  and mk = IIjmkj denotes the product density then 

and if mi are univariate normal densities with mean 0 and variance CT?, 

i = 1.2. then 

For more details see Brown and Low (1996) and Brown et al. (2002). 

It  follows that if mk, k = 1,2, are the joint densities of the observations 

{xi, Y,, i = 1, .  . . , n) of (1) with g = 0 and fk = fa , ( - l )k  then 

For this setting the Hellinger modulus-of-continuity, w( . ) ,  (Donoho and Liu (1991), 

equation (1.1)) is defined as the inverse function corresponding to the value 



H(ml,, m 2 )  Hence it satisfies 

Equation (30) (for g - 0) then follows, as established in Donoho and Liu (1991). 

Although this completes the proof of theorem (4.2), we provide a sketch of 

the argument based on (37) since a few details will be needed in the proof 

of theorem (4.1). See Donoho and Liu (1991) and references cited there for 

more details. 

Let L denote the L1 distance between ml and m2; that is, 

Note that 

L(m1, m2) 1 2H(m1, m2). (39) 

The Bayes risk, B, for the prior giving mass 112 for each of ml and m2 

satisfies 

B inf {i [ J ( i ( t )  - Y(-1))2ml(t) ~ ( d t )  

Note that because of (36), for small enough E > 0 the choice 

yields 



for some constant KO 5 m. Hence, choosing small enough E > 0 yields 

inf{sup{R(V(xo), ~ ( x o ) )  : V E C,, g = 0) : I/) > B > ~ n - ~ y / ( ~ y + ' )  (43) 

Proof of Theorem 4.1 Let 1 2 E > 0 be small enough so that (43) 

holds. Let 

and 

x* 3 = 4n-1/(2~+l)jfi, j = 1 , . . . ,  n 

Let 

L = {Ij : j = 1 , .  . . , n*) with each lj  = 1 or 2 

Let 

with 6, = ~n-'/(~'+'). Note that the components ljdnh (:;:I + that appear 

in the definition of fL have disjoint support. Note also that 

where K1 = J h2 dt. 

Now, assume that the values of lj, j = 1 , .  . . , n are independent random 

variables each taking the value Zj = 1 or 2 with probability 1/2. Let B* de- 

note the Bayes risk and let Bj denote the Bayes risk in each component prob- 

lem. Because of the disjoint support property noted above B* = Cy=l Bj. 

Hence 
n* 

B* = Enj > n*(~lE(27+l)/7n-l )K2 

j=1 



where 
1 

K2 = - 2 ( 1  - ~ ~ ~ ( ~ ~ - y / ( ~ ~ + l )  

by (42)  and the reasoning leading to it. It follows that E > 0 can be chosen 

sufficiently small so that B* 1 for some K > 0. This proves 

the assertion of the theorem. 
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Appendix 

Proof. 

Fix r and functional classes C, and Cp. For the sake of brevity, we 

write Ai G AT,i. Our main tools in this proof are the representation (17)  of 

the variance estimator c h ( x )  and the properties (18)-(19) .  We also use the 

following property: 

(44)  follows from (24)  and the Cauchy-Schwarz inequality, as was already 

noted when discussing condition (25)  in the proof of theorem (3.1).  Here 

and later, 0 is uniform for all V E C,, g E Cp and {h) = {h,). 

Now, 

E ( A ~ )  = V a r  (A,) + (E(A,))' 



where 

and 

since C d j  = 0, C d: = 1 and xi+,-jr/2l - x i - ~ ~ p ]  = 0 (A). This provides 

an asymptotic bound on the bias as 

The last step in (48) uses the fact that V E C,, the standard technique 

for bounding the summation based on properties (18)-(19) and the Taylor 

expansion of the function V up to the order 171. It  is a very minor variation 

of the technique employed in Wang, Brown, Cai and Levine (2006) (see pp. 

10-11). 

Next, we need to use the fact that Ai and Aj are independent if li - jI 2 



r + 1. Hence, 

It is easy to see that 

and this means, in turn, that 

Hence, 

Combining the bounds in (48) and (49) yields the assertion of the theorem 

since 2P > yl(2y + 1). 
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