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Abstract

In this article, we conduct a formal decision theoretic analysis of the prob-
lem of spatial competition, including the practically important case of dynamic
competition, for both one and two dimensional markets. We give a probabilis-
tic formulation for the dynamic competition problem, where successive vendors
choose their geographic locations by using the knowledge about the locations of
the already existing vendors. Under this formulation, we consider the problem of
determining the optimal location of the first vendor. In addition, we consider the
minimax formulation, originally considered by Hotelling only for one dimensional
markets, and also the nondynamic setting.

For both one and two dimensional markets, the minimax formulation and the
dynamic Bayesian formulation produce the same optimal location for the first
vendor under mild conditions when there is one future competitor. Specifically,
the minimax results extend Hotelling’s classic result to two dimensional markets.

If the number of future competitors gets large, then a very interesting thresh-
old phenomenon occurs. If the number of future competitors exceeds a suitable
threshold value ng, then the optimal location of the first vendor moves towards the
boundary from the center of the market, and appears to eventually converge to the
boundary of the market. This happens for both the dynamic and the nondynamic
case.

Some illustrative examples are also given.

*Research supported by grants from the National Security Agency, USA and the Natural Sciences

and Engineering Research Council, Canada.




1 Introduction

In this article, we give, for the first time, a Bayesian and decision theoretical analysis
of the problem of optimal location for the first vendor in a competitive market, taking
into account information about future vendors. In a classic article, Hotelling (1929)
addressed this problem in the simple setting of one future vendor; Hotelling showed that
if customers always visited the store closest to them and purchased a constant amount
of the merchandise, then any median of the distribution of the customer’s location is
a minimax location for the first vendor. Due to this historical connection to Hotelling,
the problem has popularly come to be known as the Hotelling Beach problem. The
goal of this article is to present a series of results and examples that illustrate the very
significant effect of the number of future competitors and the effect of the dimension
on the optimal location of the first vendor. We present results under both the minimax
formulation of Hotelling and the natural Bayes formulation in which the first vendor
imposes a prior distribution on the locations of the future competitors. The emphasis is
statistical. The problem is not a typical problem of statistical decision theory and yet
has practical relevance.

The Hotelling Beach model for spatial competition has been the subject of many
studies in urban and spatial economics. If vendors (or firms) sell a certain product at
the same price but transportation costs are proportional to the distance between the
customer and the firm, then customers buy from the geographically closest firm and
the Hotelling beach model applies. Most of the studies in the area of spatial economics
have considered the question of eventual stability in competition, when firms relocate
from time to time to increase their profit. In contrast, our aim in this article is to
study the locational optimization problem, in one as well as two dimensions. We do not
consider optimal locations for subsequent competitors; see Steele and Zidek (1980) for
some results on that problem.

Throughout the article, S denotes the region in either one or two dimensions where
the customers and all vendors are located, n stands for the number of future competitors,
and F' stands for the CDF of the distribution of Z, the location of a customer. We

always assume that I has a density f. We also assume as in Hotelling (1929) that




the customer visits the business closest to him, but we do not always assume that the
amount purchased is a pure constant. We let the amount purchased be a function h(d)
of the customer’s distance d from the closest vendor. In general, the minimax results
are under a general h and the Bayes results are under a constant 5.

A common feature of many of the minimax results when there is only one competi-
tor is that symmetry and unimodality of f plays a very important role. For instance, we
show that one can have a general h function and still have the median m of F' to be the
first vendor’s minimax location provided f is symmetric and unimodal around m. This
is therefore a generalization of Hotelling’s result. However, the minimax location can
behave in erratic ways and even the uniqueness of the minimax location becomes false
if the unimodality assumption is removed. If two or more competitors are expected to
enter the market, then the minimax formulation will no longer work. These results and
other examples on the first vendor’s minimax location for the case of one-dimensional
S are presented and proved in Section 2. The corresponding minimaxity results for a
two dimensional market are presented in Section 5.1. We give a nice generalization of
Hotelling’s one dimensional result. We prove that if f is spherically symmetric and
unimodal around some m, then m is a minimax location for the first vendor even if A is
not a constant function.

The Bayes formulation requires the first vendor to assign a prior distribution on the
locations of the future rivals. A strictly realistic formulation would have the prior distri-
bution for any competitor depend on the known locations of all the preceding stores. We
call this the dynamic setting. In contrast, the formulation in which the locations of the
future rivals are assumed to be iid according to some distribution would be called the
nondynamic setting. We consider the dynamic and the nondynamic settings for both
one dimensional and two dimensional markets. The one dimensional case is considered
in Section 3 and Section 4, and the two dimensional case in Section 5.2 and Section
5.3. The main features of these results are as follows. When there is only one future
competitor, the first vendor should typically choose the center as his optimal location.
Thus the result is similar to that under the minimax formulation. But a very interesting

phenomenon happens when the number of future competitors gets large. The optimal




location of the first vendor starts to move towards the boundary of the market. This
happens, very interestingly, under both the dynamic as well as the nondynamic setting.
And very fortunately, for the nondynamic setting, we can pin the optimal location down
rather precisely by means of an asymptotic expansion. We refer to this phenomenon as
"affinity to the boundary”.

The principal contributions of this article can be summarized as follows :

a. we give extensions of Hotelling’s minimaxity result to the case of a nonconstant pur-
chase function, as also to two dimensions;

b. we give a formulation of the practically important dynamic competition problem;

c. we show that for the case of one future competitor, the minimax and the dynamic
formulation provide similar answers;

d. we show that when the number of competitors becomes large, an affinity to the bound-
ary occurs in both the dynamic and the nondynamic setting;

e. in the nindynamic setting, we are able to pin the optimal location down precisely by
an asymptotic expansion;

f. we show this affinity to the boundary occurs for both one dimensional and two dimen-
sional markets;

g. we give many illustrative examples.

2 Minimax Solutions in One Dimension

The Hotelling Beach problem studies optimal locations for the first vendor taking into
account the possibility of future rivals. The minimax strategy is usually a nice start when
we encounter such a competitive situation involving two or more intelligent players. We

start with notation and a description of the formulation of the minimax problem.

2.1 Notation

We begin this section by introducing the mathematical model and the notation. We
denote by S the regular domain in which potential customers and businesses are located.

The one-dimensional case where S is either a bounded interval or the whole real line




will be considered first. Let Z be the possible position of a buyer; we assume Z to be
a random variable with cumulative distribution function F' and density f. Assume we
are the first store to set up a vendor in the region S. The location of our store and
the future competitors are represented by = and y;,ys, - . -, Yn, respectively, all distinct.
Here n is taken as fixed. We assume that a buyer has no preference for any seller and
will always visit the closest store. The number of dollars he will spend in that store is
assumed to be a function of the distance between him and the store, denoted by h(d).

A summary of the notations is given below for the reader’s convenience:

S : the market.
Z ~ F with density f : the position of the customer.

h(d) : the amount spent by the customer at a distance d from the vendor.
x . the location of the first vendor.
[ Y1- - Yn : the locations of the future competitors.

The sales we expect from one customer when we locate ourselves at xz and the future

competitors are located at yy,...,y, i8

D(:L‘; Y1,00 0, yn) =F [h(iZ - ‘T|)1{IZ_x!<min1§i§n|Z_yil}] :

The location z is in our control, but the locations y1, . .., y, are not. Therefore, the mini-

max optimal strategy for the first vendor is to select # which maximizes infy, ... y.es D(Z; Y1, *, Yn)-

2.2 Minimax Solution with One Competitor

It would be natural to start off with the case when there is only one future competitor.
We will denote this sole rival’s location by y.

Note that, if this competitor places his vendor to our left, i.e. y < z, the customer
will visit our store if and only if he is at the right of the middle point (z+y)/2. Therefore,
our expected sales will be E[h(|Z — z|)1({z>(z+y)/2}]- The domain {Z > (z + y)/2} will
decrease to the domain {Z > z} when y tends to z from the left. Hence, clearly,
inf s, D(z;y) = E [h(lZ —x|)1¢ ZZz}] . Similarly considering y on the right hand side of
z, one has inf,5, D(z;y) = E [h(]Z — $|)1{Zgz}} . Combining these we have

Viz) Y inf D(z;y) = min (E [h(|z - x|)1{zzm}] E [h(|z - x|)1{ZS,}]) )

5




For the case h = 1, Hotelling (1929) showed that the minimax optimal location for

the first vendor is the median of F'. We state it for completeness of our presentation.

Proposition 1 (Hotelling) If h(-) is a constant function, the set of minimaz optimals

equals the set of medians of F.

The assumption that h is a constant in Proposition 1 may not be always realistic. For
example, we may want to consider the possibility that customers too far away do not
make a visit to buy anything. In that case, the choice h(d) = 1{4<q,} may be better.
Fortunately, it is possible to prove a general neat result on the minimax optimal location
without requiring that h(-) is a constant. The additional assumption needed for this
result is on F'; see the proposition below. The examples that follow the proposition

show that without this additional assumption, this general result is false.

Proposition 2 If f is symmetric and unimodal around some m, then for general h, m

18 & minimax optimal.

Proof: If we can show that Vi(x) = F[h(]Z — z|)1{z>s)] is a decreasing function of
z for £ > m, Va(z) = E[M(|Z — z|)1{z<s}] is an increasing function for z < m, and
Vi(m) = Va(m), then it will follow that m is a minimax optimal.

Consider a nonnegative measure u, defined by
us([a,b]) = P[Z € z + ([a,0] N[0, 00))],

where “+” is the shift operator. Then, we have Vi(z) = [ h{t)du,(t). Let B be any
Borel set of R. The assumption that Z is unimodal with mode m implies that u,(B) is
a decreasing function of z for z > m, and so Vi(z) has the same property.

Similarly, one proves that V,(z) is increasing for x < m. Furthermore, symmetry of Z
easily implies Vi(m) = Va(m). This, therefore, completes the proof. =
The pleasant features of Proposition 2 disappear when F is not unimodal. Here is an

example.

e202-2* ¢ 2] <2 e? if0<d<2
Example 1 Let f(z) « . and h(d) = ,

e~UZ1=2%/32 if |2 > 2 e/ if d>2
Then Z is bimodal with modes +2, and the minimax optimals can be computed to

be +3.3.




2.3 Minimax Solutions with many competitors

In contrast to the case when there is just one future rival, if two or more competitors
exist, then the minimax formulation will no longer work. Let us explain what we mean.
Suppose that there are two future competitors, say A and B. A sets up his store at y;
on our left, and B at y; on our right. Now, if A and B move their stores closer and
closer to us, the probability that a customer visits us, i.e. P[Z € (Y2, 2] will
decrease to 0. Hence, no matter where we place our vendor to start with, we always
have inf,, 4, D(z;y1,y2) = 0. Therefore, the minimax approach is not interesting at all
when n > 2. This motivates us to look for other reasonable formulations of the problem.

The minimax approach is tantamount to saying that we are not willing to make
any assumptions about our future competitors. This conservative approach may be
rational in some situations; but surely in certain other situations, we may be willing to
make assumptions about our future rivals. We will now see that fortunately this Bayes
approach remains meaningful for any n > 1 and, unlike the minimax approach, does not

lead us to an uninteresting dead end if n > 2. We now move on to the Bayes approach.

3 Dynamic System in One Dimension

In this section, we will first propose a reasonable prior on the locations of the future
vendors taking into account the locations of the already existing vendors. A general
result on the Bayes solution for the first vendor when there is only one future competitor
will be given. It will be proved that, under some conditions on f, the medians of f will
be the optimal locations for the first vendor. This proves that Hotelling’s result under
the minimax formulation can be the dynamic Bayes solution as well. Analytical results
in the dynamic set up for two or more future competitors seem to us to be impossible.
So we present a numerical analysis of the optimal solutions for the case of two or more
future rivals. The numerical results reveal the interesting phenomenon that the Bayes
solution for the first vendor starts to move away from the modes/medians of f towards
the boundary of the market as the number of the future rivals increases.

Let g:(%]z, yo, - - -, ¥i-1) and Gi(ylz, yo, . . ., ¥s—1), simplified to g; and G, denote,




respectively, the density and the distribution of the location of the ith vendor given the
already existing stores at x,¥y1,...,¥:—1. An intelligent vendor is likely to prefer those
locations at which he can make a larger profit, using the knowledge about the locations

of the already existing vendors. Accordingly, we will take

gi(yilx) Yi,- - 7y'£—1) X Bz r [h(tZ - yil)l{lz—yi[<minosj5i—1|Z—yj|}] l{inS}’ (2)

where yo = z. We will see that, under a very weak assumption, namely, Ez.r(|Z]) < oo,
this density is well-defined, i.e., the integral of the right hand side of (2) over y;’ s is
finite. Hence, D, (), our expected sales when we build our store at z and believe there

will be n future rivals, can be expressed as

Dn (@) = Ezer,(vi|X=2)~Gr1y (Yol X=2,Y1, Y _1)~Gn [h(IZ - xl)l{lZ—a:]<min1S.;5n|Z—Yi|}] - (3)

The Bayes solution z,, the value of  which maximizes the utility function D, (z), usually
has no problem with its existence, e.g., if the market S is compact or closed and h is
continuous. Nonetheless, the uniqueness of the Bayes solution is an exception rather
than a rule. Note the complexity of the utility function in (3). It is not surprising that
analytical solutions are so difficult in this dynamic set up.

For h(:) =1, (2) and (3) are simplified to
gl(y%|x7 Yi, - )yi—l) x PZNF <IZ - y%l < 0<I§1<i£l_1 IZ - y]') 1{%65’}, and (4)

Do(£) = Pk X s uikmsitis s (1 =2l < min |2 =Y} (5)

We do assume A(-) =1 in the rest of Section 3.

3.1 One Competitor

We start with the case of one competitor. First, we intend to show that g; in (4) is

well-defined. Before doing that, we need to state a standard fact.

Fact 1 Suppose Z ~ F and E(|Z|) is finite. Then for any given z, [*. F(t)dt and
(1 = F(t))dt are finite, and moreover

B(Z)=z- [ " F(t)dt+ / “(1 = F(t)at.




Remark: Note that when the market is bounded, the finite first moment of Z is auto-

matically satisfied.

Lemma 1 Let the customer’s location Z be distributed as F' with density f. If F has o
finite first moment, then g1(v1|x) in (4) is well defined.

Proof: When n =1, g1(y1|z) in (4) is simplified to

T+ T+

gi(uile) o< Pzor (12 = | <12 —2]) = F(-57)lg<ay + (1= F(-57) 1 gisay-

Thus, the normalizing constant equals

T4y z+Y
/s (F( 9 1)1{y1<m} + (1= F( 9 1))l{yl>ﬂc}> dy

= 2/ (FO)lg<ay + (1= F(t)Lpsey) dt < 2 /R (F®) gy + (1= F(£)1oay) dit,
=
which is finite by Fact 1. This proves Lemma 1. m|

By a similar argument, after some algebra,

Di() = [ Por(1Z =2l <12 =y (wila)dys
oz F(8)(1 = F(t))at
Joge (F(8)1gpery + (1= F(£)Lieoay ) dt

The following question arises naturally.
Question: Hotelling (1929) showed that if h is a constant, then any median of F is
a minimax solution. Is the median of ¥’ a Bayes solution as well under some general
conditions on F' in our dynamic set up?
Theorem 1 and Theorem 2 below address this question. Notice that we state the results
separately for a bounded market and an unbounded market. Though these two theorems

tell us the same story, more assumptions on f, however, are required if the market is

bounded.

Theorem 1 Suppose the market S = R, and F has a finite first moment. Then the set

of Bayes solutions for the first vendor is exactly the set of medians of F.




Proof: It is easy to see that the numerator of (6) does not depend on z when S = R.
Hence, we only have to prove that the denominator of (6) is minimized at any median

of F. This can be seen by simply taking a derivative. We omit that calculation. m]

Theorem 2 Suppose the market S is bounded, say [—1,1], and f is symmetric and

unimodal around 0. Then 0 is the unique Bayes solution of the first vendor.

Proof: When S = [-1, 1], (6) becomes

St F()(1 - (&)t
s F(f)dt+ 7 (1 - F()dt

D(z) (7)

Let us denote the numerator and denominator by V(z) and W(x), respectively. If we
can show that V(z) has a maximum and W(z) has a unique minimum at 0, then the
theorem will be proved.

By the fundamental theorem of calculus, one has

/ 1 1+z 1+zx 14z —1+z
(F( ))>.

V() =5 (FSD0 - F(—2) - F(——0)1 - F(—,

(8)
Using the symmetry of f and the fact that p(1 — p) is symmetric and unimodal with
mode at p = 1/2, it can be shown that V'(z) > 0 when —1 < z < 0 and V'(z) < 0
when 0 < z < 1, which implies V(z) is maximized at 0.

Now, let us look at W(z). Again, by the fundamental theorem of calculus and the

symmetry of f, one has

W) = 5 (1@ -1-FCE5 - F(D) (9

= S (3@ - FO) + (P50 - FO) - (FC5) - Fla) - (10

Next, by virtue of the assumption that f is unimodal around 0, F is convex on [—1, 0] and
concave on [0, 1]; hence one obtains that W'(z) > 0 for all -1 < z < 0 and W'(z) <0
for all 0 < z < 1. This implies W(z) has a unique minimum at 0.

This completes the proof. O

The next example shows that the unimodality assumption of Theorem 2 cannot be

relaxed.
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Example 2 Let S = [-1,1] and f(z) = 32%1(j,)<1}. Note that f is symmetric around
0 but not unimodal. When S = R, the utility function is

12
Di(z) =
@) = 75y
which is maximized at 0. But when S = [—1, 1], the utility function becomes
1

2(1+ 45 (152% — 622 — 1)) '
which has a maximum at z = £0.36. Hence, 0, the only median of f, is no longer the

optimal location for the first vendor.

3.2 With Many Competitors

We now consider the case when there are two or more future competitors. It is again
easily shown that gi(ys|z,v1,...,¥:-1) is well-defined for any i > 2 if E(]Z]) < 0.

As one can see from (4), the prior on the location of the ith future vendor depends
on the locations x, 1, ..., y;—1 of the already existing stores. The joint distribution of
(Y1,...,Y,) is too complicated. This makes any theoretical analysis extremely difficult.
In this section, we will give some heuristic arguments and a numerical analysis for the
examples where S = [—1,1], F = Unif[-1, 1], Beta(2,2) on [-1,1], and Beta(4,4) on
[—1,1], and g; is as defined in (4) with n = 1, 2, 3, and 4. The Bayes solutions and the
utility functions are shown in Figure 1. Although the analysis is numerical, the findings
are interesting.

We see that the Bayes solutions for the first vendor start to move towards the
boundary values 1, as the number of the future competitors increases. A possible
heuristic explanation is that suppose there are two future competitors to enter the
market. If we set our vendor at the median(mode) of f, the first future rival will
most likely set up his vendor at our immediate right or left rather than closer to the
boundaries; say, he sets up his vendor at our immediate right. Then, the second rival will
most likely set up his vendor at our immediate left. This will result in a small amount
of sales for the first vendor. Thus it may be not productive for the first vendor to locate
himself at the center and indeed he may be better off moving towards the boundary to

alleviate the squeezing effect.

11




y = £0.256 3 = £0.480 T4 = £0.569
F = Unif[-1, 1]

F = Beta(2,2)

1'2:0 .'L‘3=0 £L'4~——:l:01].8
F = Beta(4,4)

n=1 n=2 n=3 n=4

Figure 1: Utility functions and the dynamic Bayes Solutions for the first vendor

when S = [—1,1] and g is as defined in (4).

We can observe from the plots a threshold value of n for z,, to move away from 0

towards the boundary values &1 and the threshold relates to the degree of the sharpness
of f at 0 and the rate at which f vanishes at 1. The sharper f is at 0 and the faster
f vanishes at £1, the larger the threshold will be. However, what seems to be most
interesting is the phenomenon that the dynamic Bayes solution x,, always seems to move
towards the boundary when n is large enough, regardless of how fast the customer density

drops to zero at the boundary points. This phenomenon of movement to the boundary

when there are a threshold number of future competitors is qualitatively interesting.
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4 Nondynamic System in One Dimension

In the last section, the distribution imposed on the location of the ith rival depends on
the locations of the already existing stores. This complicates the problem very much from
a theoretical viewpoint, especially when there is more than one future competitor. So it
is interesting that if we adopt a nondynamic setting, a number of additional analytical
results can be obtained, and most interestingly, some of these results are similar to
the ones in the dynamic setting. Suppose the future rivals decide on their locations
independently, according to some distribution G which has a density g; symbolically,

Yi,...,Y, "% G. Then the first vendor's D, (x) can be expressed as

Du@) =P, . s (12 ~ 3| < min |7 - m) . (11)

Again, the Bayes solution z,, has no problem regarding its existence but not the unique-
ness. This is especially so when n is moderately large. In fact, a very interesting
threshold phenomenon again holds. x,, under this nondynamic setting, behaves like in
the dynamic system. The median (mode) of f is the Bayes solution for the first ven-
dor only when n is small, and z, starts to move towards the boundary of the market
when n gets larger. In addition, we can pin down z, very precisely via an asymptotic

expansion.

4.1 Bayes Solution with Many Competitors

We consider only the case where there exist two or more future competitors. The case
of one competitor can be seen in Tsai, DasGupta, and Zidek (1999). We take S to be a
bounded interval [a, b]; without loss of generality, we may choose [a, 8] to be [—1,1]. Let
also G be the uniform distribution on [—1,1]. The case of a general G would be briefly
commented on.

Note that a customer located at z on our left, i.e. z < z, will visit us if and only if
there are no competitors located between 2z — x and z and, similarly, if the customer is

on our right. Consequently, the general formula for the utility function in (11) becomes

Dafz) = |

—0

z

(G(2z — ) +1 - G(z))" f(2)dz + /:o (Gz)+1—- G2z —x))" f(2)d=.
(12)

13




For § = [-1,1] and G = U[-1, 1], (12) simplifies to

Dule) = (GEPFESH 4 [T - s pat
+/0%(1—t)"f(x+t)dt+(1+x)”(1—F(1J2rm)) (13)
= I+ U+ U)s+ s (14)

One can observe from (13) that D,(z) is continuous and bounded for z € [-1,1].
Consequently, a Bayes solution exists.

The actual analysis in the remainder of this section will get rather technical. Thus,
it would be helpful to have a preview of the principal phenomena that arise from the
results. The preview would be useful to appreciate how the case of many competitors
differs from the case of one competitor and to provide an explanation for the reason the

differences arise. We now give a brief preview.

4.1.1 Preview

The key difference between the cases of a small 7 and a large n is that for large n (for some
F’s), the first vendor’s optimal strategy is to move away from the center and to choose
a location near the boundary. We will show that if F' is uniform, then the first vendor
should set up his store at 0 only if n < 4, and move to locations +z,, near the boundary
if n > 5 (n = 5 thus being a threshold), where z,, is a root of a complicated equation;
but there is a nice approximation, namely, z, = 1—%+o0(), n — co. Heuristically, one
can guess that the Bayes solution will move from zero starting at n = 5 by noting that
the second derivative of the utility function satisfies D;(0) = "2(2—;%12 which is positive
for n > 5 and, from symmetry, D} (0) = 0 for any n. Figure 2 illustrates the shape of
D, (z).

For general F', the final results are similar, although at first they seem counterin-
tuitive. For instance, an intuition might suggest that if F' has a unique mode m in the
interior of S, then the first vendor ought to be located at that unique mode. For large
n, this is not exactly correct. If the unique mode m is a very pronounced one, then

indeed the first vendor will stay there. But if the density f at a boundary point is only

a bit less than the density at that interior mode, then for large n, the first vendor should

14




move closer to that boundary point. We make precise what the meaning of “only a bit
less” is. For example, if f is unimodal with a mode at 0, and, f(1) > .9366/(0), then
for large n, the first vendor should abandon the center and seek a location z, near the
boundary 1, where, fortunately, the approximation z, = 1 — 2 + o(2), n — o0, is valid
for general F, not just when F' is uniform.

Intuitively, if n is large, then the first vendor would be sandwiched between com-
petitors on his left as well as on his right if he were to select a central location. By
moving closer to the boundary, he can essentially eliminate competition from one side,
say his right. If there are still a good number of customers on his right, they are all
necessarily his clients, and, in this way, he is better off moving towards the boundary
than staying at the central location.

We describe precisely this verbal exposition. If {z,}3 ; is any sequence of optimal
locations of the first vendor, then every accumulation point of {z,} must be £1 or an
interior mode of f. Hence, asymptotically, the first vendor’s task is simple: consider
only those interior locations (if any) that are modes of f, and also consider the two
points 1 — % and —1 + %. If he limits his search to just these locations, he would be
approximately correct.

We will present the special case F' = uniform first. There are two reasons for doing
this. Firstly, it is an important special case and, secondly, there is an explicit threshold
result for the uniform case.

We should remind the reader at this point that we have already assumed G to be uniform

on [—1, 1] for the entire Section 4.1.

4.1.2 The case of Uniform F

Theorem 3 Suppose that F' and G are both uniform on [-1,1]. Then,

(a) when n < 4, there is a unique Bayes solution x, = 0,

(b) whenn > 5, there are exactly two Bayes solutions, —x,, and x,, for some 0 < z, <1,
and

(€) Zn=1—2+0(2), asn — oo.
Some plots of the utility functions for F' and G uniform on [—1, 1] are shown in Figure 2

15




for illustration. Note the similarity to Figure 1 in the dynamic case.

n=1 n=4 n=>=5 n = 10.

Figure 2: Plots of D,(z) when F' and G are both uniform distributions on [-1,1].

Proof: Step 1: When F = U[-1, 1], D,(z) can be simplified to

Dula) = g [2- 00 2) (50 + (G50 + k) (54 50|
(15)

Consequently,

/

D) = 5 [~(n+2) (D - () +n (3 - 55 (o)

Since Dy (x) is symmetric, we only need to check the sign of D, (z) for z in (0, 1) to find
the Bayes solutions.

Define a,(z) = (H2)" — (352)" for n > 1 and by(z) = an(2)/an-1(z) for n = 2.
The following recurrence equations for a,(x) and b,(x) can be easily derived:

1—122 1—z2 1
an(z) = an-1{x) — 41: an—2(z) and by(z)=1- 43: boa(e) for all n > 3.
(17)
Also note that
D, (z)>, = or < 0 ifandonlyif by(z)<,= or > E_j——? respectively.  (18)

By a straight application of L’Hospital’s rule and some algebra, the following claims can
be obtained:

Claim (A): For each fixed n > 3, b, () is a strictly increasing function of z in (0, 1).
Claim (B): limy_,qb,(z) = sy and limg bu(z) = 1. |

Claim (C): For each fixed z € (0,1), {b,(z)}32, is a strictly decreasing sequence of n.
Step2: (Proof of part (a) of Theorem 3). To prove that 0 is the unique Bayes solution,
it is enough to show that D, (z) < 0 for all z € (0,1). By (18), this is equivalent to
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bu(z) > 5 for all z € (0,1). Because this result needs to be verified for only four
values of n, one can show it by direct computation. We omit that verification.

Step 3: (Proof of part (b) of Theorem 3). If we can show that there exists 0 < z, < 1
such that

by (z,) = by (z) <

for z, <z <1,
(19)

it will follow from (18) that D,(x) strictly increases in the interval (0,z,) and strictly

for 0 <z <z, and b,(z) > i
n+2

" "
n+2’ n+2
decreases in the interval (z,,1). This implies z, and —z, are the only two Bayes
solutions. The existence of such z, follows from claims (A), (B), and (C) stated above.
Step 4: (Proof of part (¢) of Theorem 3). For n > 5, plugging z = z,, into (17), we

have

n 1—22 1 8bn—1(zn)
—1--"%n_ (1 — z,) = p-iifn)
n-42 4 bp-1(zy) = (421 -z) 14+ 2z,

bun(2n) = (20)

Furthermore, by claims (A), (B), and (C) given above, we have lim,_,o, bp—1(z,) =
1. Hence, from (20), z, = 1 — 2 + o(2) as was claimed, and this completes the proof of

part (c). O

In reality, the number of the future competitors is usually unknown. Therefore, we
may want to treat n as a parameter and impose a prior on it. Suppose for example that
n ~ Poisson()), i.e. P(n =k) = e *X¢/k!,k = 0,1,.... Note that under this model, it
is possible that there will be no future competitors. Obviously Do(z) = 1. Hence, the

utility function for the first vendor becomes

Di(z) = > e —n—IDn(ac)
n=0 . :
_ 1 1/1—2 _l=zy 1+2 _lisy 1 iz _lymy
_X+§<262+ 262>*ﬁ(62 +eT ). @)

Notice that Dy(z) is an even function of . Therefore, if x, is a Bayes solution for the

first vendor, so is —x,. Interestingly, even under this model, there is a threshold result:

Theorem 4 Suppose that F' and G are both uniform on [—1’,1]' and n 1s Poisson dis-
tributed with parameter X. Then we have

(a) when A < 6, the Bayes solution is unique and it is 0,
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(b) when X > 6, there are exzactly two Bayes solutions, xx and —z, where 0 <z <1,
and

(c) za=1—540(3), as A — 0.

Note: It is interesting that the threshold value for A is 6, a whole number.
Proof: Refer to Tsai et al. (1999) for the proof. O

5 Two-Dimensional Markets

Instead of a linear market, it may be more realistic to consider a two-dimensional mar-
ket. We will continue to use the notation introduced in Section 2.1 for one-dimensional
markets. Also, we still assume that a buyer visits the closest store. As before, we would
like to investigate these two-dimensional markets from three perspectives: minimax and

the dynamic as well as the nondynamic set up.

5.1 Minimax Solutions in Two Dimensions

As we did in the case of a linear market, first let us consider the case of only one future
rival. Let us denote the future rival’s location by y. The expected sales for the first

vendor then becomes

D(z,y) = E(h(1Z - z)1qz-ai<iz-uy) = ER(1Z — 2l Lizen(@rw/zz-—wy),  (22)

where H(p,n) is the open half space containing the point p + n with its boundary line
passing through the point p and perpendicular to the vector n, i.e., H(p,n) = {z :
n-(z—p) > 0}. Let eg = (cosh,sinf). By a simple argument, one can see that the

minimax solutions are points maximizing

V(e) ¥ minD(z,y) = min E(h(|1Z — )l zenreeny) = minVilz),  (23)

Ly

where  Vy(z) € E(A(1Z - 2)1izeneen)- (24)

When h(:) = a constant, say 1, from (23), the minimax solutions are those points
which maximize V(g) = ming P(Z € H(z,ep)). Points which maximize ming Pz.r(Z €

H(z,eq)) are, in fact, defined as the halfspace medians for a bivariate distribution F.
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Indeed, the halfspace median, a generalization of the univariate median to higher dimen-
sions due to Tukey (1975) and Donoho (1982), is motivated by this minimaxity result
(see Small (1990) for details). Therefore, we conclude a result similar to Proposition 1:
if h(-) is a constant function, the set of minimax optimals for the first vendor equals the
set of halfspace medians of F.

If we intend to discard the assumption that h(-) = a constant and still want to get
a clean result, more conditions on F' will be needed. The following is a general result
analogous to Proposition 2. It is about the best possible clean extension of Hotelling’s

result to the case of two dimensions.

Proposition 3 If f is spherically symmetric and unimodal around some m, then for a

general h, m is a minimax optimal.

Proof: Without loss of generality, we can take m to be the origin.
Step 1: We claim Vj(rey) is a decreasing function of r in [0, 0o) for all §; recall that the

formula Vj(-) is as defined in (24). It is obvious that

Vifres) = | Mz —resl)f(2)dz= [ BOIEDFE+redt.  (25)

2€H (reg,eq) L€ H(0,e0)
Now observe ||t + reg||> = ||£]|> + 7% + 27t - ep, which is an increasing function of r for
t € H(0Q,ep). Therefore, the assumption that f is spherically symmetric and unimodal
around the origin implies that for any fixed 6, f(¢ + 7ep) is a decreasing function of r
for t € H(0,ep). Applying this to (25), we prove this claim.

Step 2: We claim there exists a constant ¢ such that Vp(0) = ¢ for all §. This is
obvious; since f is spherically symmetric around the origin, it is evident that V(0Q) does
not depend on 6.

Step 3: Now we shall show V(z) < V(0) for all z in R?. For any g in R?, there exist
7o > 0 and 0 < 6y < 27 such that £ = roeg,. Therefore one has V(z) = ming Vy(roeq,) <
Voo (T0€q,), which is smaller than Vj,(0) by Step 1. On the other hand, Step 2 implies
V(0) = ming Vp(0) = ¢ = V,(0) for all fy. Therefore, we have V(z) < V(Q) for all .
This completes the proof of Proposition 3. a

For reasons identical to the case of one dimension, the minimax formulation is

uninteresting if the number of future rivals is more than 1. So again, we will now
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proceed to consideration of the Bayes approach. Theorem 3 below is a clean general

result for the dynamic case.

5.2 Dynamic System in Two Dimensions

Throughout this section we will take h(-) = 1.

As we mentioned in Section 3, the dynamic model assumes that the future com-
petitors decide where to set up their vendors based on the available information on the
locations of the existing stores. We assume each competitor situates his business at
location y with a likelihood proportional to the profit that he will make if he sets up his

vendor at y. Namely, as in Section 3,

Gul, v, vimn) o Paer (117 = wll < i 117 - 9,0 1ggesy,  (26)

where y, = z.

Similar to Proposition 3 in the last section but with less assumptions on f, the
halfspace median will again be an optimal for the first vendor in the dynamic system
with one future rival when f is spherically symmetric. Before proving this statement,

we have to show that the density in (26) is well-defined.

Fact 2 If ||Z|| has a finite second moment, then we have

[ Por (12 = wll < min 12 =yl ) dys < oo,

0<5<i—1

Thus, gs(yslz,v1, -, ¥;—1) in (26) is well-defined.

Notice that for a one-dimensional market, the corresponding sufficient condition is a
finite first moment of Z, while in a two-dimensional market, we seem to need a finite
second moment.

Proof: Since the integrand is bounded by Pz.r (||Z — y,|| < {|Z — z|]) , it is enough to
give the proof for the case ¢ = 1. Moreover, after performing a location transformation,
we may assume z =

Now note that Pzr (||Z —y|| < ||Z]]) £ Pz~r (||Z|| > ﬂ%“) . Therefore, we have
[ Par 17 = ull < 121D dy < 87 [ Py (11211 > ) rdr,
which is finite since E(||Z|[?) < oo. &
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Next, some formulae for D(z), which will be used to prove Theorem 5, are presented

below.

Lemma 2 Suppose f is spherically symmetric around Q with o finite second moment,
and the only one future competitor sets up his vendor according to the density given in
(26). Then the expected profit for the first vendor when he sets up his business at z is

given by
JyesP($)(1 = p(§))dy

fyGS p( )dy
where d = Ilzllll;:llyIIQ and p(d) = Pz.r(Z) < d).
Furthermore, we can also express D(z) in the alternative form:

D(z) = ; (27)

Dig) = /fy reprs POIEL) (1 — p(liglhy) LerZakl gy

_zm 4 d I_Zx T ?
yeapiiain POE) SiRlay + fyepisvoioyam (1 — () W d(y , )
28

where D(c,r) ={z : ||lz—c|| £ r}. (note thaty' in formula (28) is not to be understood

as a transpose of y).

2

Proof: Let ¢’ = (0,0) and for any given z and y, ¢ = Jl—%Hl_—gH[—z”— - (y — ). Notice that

X vy’
two vendors located at  and y are visited by the same set of SN
customers when we “relocate” the vendors to g’ and y' (refer A B N
to the picture on the right). With careful algebra, one has: < Yy

7l < 17— all e | 1E-¥I<NZ=21l it Il =gl <]’ =l
1Z -yl >11Z =2l if I’ =2l > |z’ -yl

Therefore, by the assumption of spherical symmetry of f, we have

1—p(y,if y ¢ DO, |Jz|l)

Pror(lZ—dll <llZ =2l =y |
2-#(11Z = 4ll <112 3l {p(w#), if y € DO, lal)

. . Js PUIZ—2li<lIZ-ul)P(IIZ-ull<IIZ~zl)dy
Then (27) follows immediately from the facts that D(z) = T PUIZ—I<I1Z 2y ,
”yH—i ||y x“ l and p(—d) = 1 — p(d).

As for (28), it can be derived by the change of variable y — 3’ with Jacobian equal

to M]‘l—iﬁ%ﬂ, and by the fact that y € D(Q,r) if and only if ¥ € z + D(0Q,r) for each
r > 0. This completes the proof of Lemma 2. m|
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Now we give a characterization of the optimal location of the first vendor under

the dynamic Bayes set up when there is only one future rival.

Theorem 5 Suppose the market S = R?. Assume Z ~ F and F is spherically symmet-
ric around Q with a finite second moment, and the only one future competitor sets up
his vendor according to the distribution defined in (26). Then Q is an optimal location

for the first vendor.

Remark 1 Note that this theorem addresses the market S = R? only. Recall the results
in Section 3. When a one-dimensional market is the whole real line, the median is the
optimum location for the first vendor. We do not need assumptions on the shape of f.
However, if the one-dimensional market is bounded, the median is optimal only if f is
symmetric and unimodal around the median. On the other hand, for a two-dimensional
market, it seems that the halfspace median (which is just the point of symmetry) is
always an optimum choice for the first vendor if f is spherically symmetric, without the
unimodality assumption, regardless of whether the market is bounded or not. Numerical
analysis shows that Q is the optimal location for the first vendor for the special examples
S = D(0,1) and f(r) o 1,7, %,72,71%,7%, or 7(1 —r). Note that in the special case if

f(r) < 1/r (0 < r < 1), F is spherically symmetric, but not unimodal.

Proof of Theorem 5: Since f is spherically symmetric around Q, D(z) depends only
on ||z]]. Without loss of generality, we may assume g = (rz,0), where r;, > 0. Moreover,
when the market S = R?, the domain z + S is again the whole plane R?. Therefore,

(28) becomes, on algebra,

T T r
D(rs) = [ #(Z)(1-p(E))Ir—2r; cosdldéd / ( T Lo cosbon s B Dl re O
(r2) (r,e)p(2)( P(Q))IT 7z COS 6| 7‘/ 0 P(2) {(r cos 6,7 sin §)€D((rz,0),rz)} T

r
(1- P(g))l{(rcos 9,rsino)¢D((rz,o),,«z)}> |r — 27, cos f|dfdr. (29)

The proof will now require a very careful analysis. The following facts are useful in
simplifying the integral in (29). We will not provide their proofs, which require only
algebra and calculus.

(A) For every fixed r < 2r,, we have r — 2rycosf > 0 if and only if 6, < 6 < 27 — 6,

where 8, = arccos(r/2r;); as a consequence, [ |r—2r, cos 8|df = (2w —46p)r+8r, sin 6.
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(B) For every fixed 7 > 2r;, we have r — 2r, cos§ > 0 and, hence, [ |r — 2r, cos f|df =
2mr.

(C) For every fixed r < 2r,, we have (rcosé,rsinf) ¢ D((rg,0),7,) if and only if
o < 0 < 2m — 0. Consequently, [i. cos,rsing)eD((ra,0)rme) |7 — 27z COSO|dE = —26o7 +
drgsinfy > 0 and [, cos g, sin 0)gD((rs,0),re) |7 = 27z CO8 0]d6 = (2 — 20)r + 47z sinfy > 0.
(D) For every fixed r > 2r,, we have (rcosf,rsinf) € D((r;,0),r,) for all § and,
therefore, [i, cos .1 sin0)e D((rn,0),ra) IT — 27z 08 0]d0 = 277,

By the facts listed above, (29) becomes

D(r,) = (/ozrzp(%)(l - (5))((27r 46y)r + 87, sin 6y) dr—l—/ )1 - (2))27rrdr>
/1 /Ow () (~20ur + drzsindo)dr + [ (1~ p(g))((27r — 200)r + 4r, sin fo)dr

+[ - p(g))zwdr)

2ry

JoZ p(5)(A = p(§))2mrdr + [5* p(5) (1 — p(5))(~460r + 8ry sin 6 )dr
J§°(1 = p(&))2mrdr + [ (—204r + 47, sin 6y)dr ‘

(30)

Now we will show that D(0) > D(r;) for every r, > 0 which will prove the theorem.

This is equivalent to the following inequality:
ox T r 21‘;5 .
|- p(i))Zwrdr [ (2607 + ar sinby)ar
0
27
> / 1 — p(L))2nrdr - / p(g)(l —p(g))(—4907‘ +8r,sinfo)dr.  (31)
0
By definition of p(-), we have p(%) > 1 for every r > 0 which immediately implies that
Sl T 1 feo T
S =pEN2mrdr> 5 [T(1-p( .
L) —pE2mrdr 2 5 [T = p(C))2nrdr
On the other hand, since 1 > 4p(5)(1 — p(%)) and —20yr + 4r, sinfy > 0, one has
27z
/ (—26pr + 41y sin Gy)dr > 2/ 1 - (;))(—400 + 8r, sin fy)dr.
0
Therefore, inequality (31) holds and, hence, ( is optimal for the first vendor. O

When there are two or more competitors, the search for the optimal location for the
first vendor is a difficult task. We do not have any results for this case worth reporting,

and are conducting some numerical analysis.
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5.3 Nondynamic System in Two Dimensions

Analogous to one dimensional markets, the Bayes solutions for the first vendor in a
planar market can possibly move towards the boundary of the market when the number
of future competitors n is large. We will give some nice examples first and then state a

general result.

Example 3 Let S = [-1,1] x [-1,1]. Take F and G to be uniform distributions
in S. Figure 3 illustrates the shape of the utility functions for some selected values
of n. Some Bayes optimals z, are also calculated and they are z, = ... = g5 =
(0,0),z6 = (£.11,£.11), 27 = (£.27,£.27), 210 = (£.41, £.41), z90 = (£.58,4.58), and
T30 = (£.65,£.65). From these observations, we believe that when n < 5, the origin will
be the unique Bayes solution, and when n > 6, there will be four Bayes solutions, one
in each quadrant, and they will move towards the four corner points of S as n goes to
infinity. If this statement is true, we again get a threshold result for a two dimensional
market. The threshold value will be 6, which is larger than the threshold value for the
one-dimensional market which was 5. One possible explanation for this larger threshold
value is that, due to an increase in the number of dimensions, the competitors themselves

will spread out, making the central location relatively safer for the first vendor.

The next example is similar to Example 3 except that the shape of the market is now

circular.

Example 4 Let S be the unit sphere in R?. Suppose again that both of F and G
are uniform distributions in S. Then, after some calculations, one has z; = ... =
zs = (0,0), z6 = .20(cosf,sinf), z10 = .48(cosf,sinf), zz0 = .64(cosd,sind), and
Zso = .71(cos §,sin @), where 0 is arbitrary. We can see that the threshold value is 6, the
same as the threshold value for a rectangular market. It seems that the threshold value

does not depend significantly on the shape of S.

Now, let us look at an example where the customers prefer to stay near the center and

yet the first vendor’s Bayes solutions move towards the boundary for large n.

Example 5 Take S to be the unit sphere in R2. Suppose the position of a customer has

the density f(z) = 32(1— ”%E), and the future rivals are uniformly located in S, i.e., G

24




7
e
e

A,
MR
h

i,
1 ifigy
Vit gy,

i, 435 5330
By 1101800q, 3285 32,
(it BT i e ey begseda
1111011, & A T Y TN NS
A nuu"l"”;'l"” i muu:u",”’l‘-‘:’.-ifﬂg ﬂa%gb
4g, 90, 25

4
g
20005 20g1%
aa””ﬂn’;”;e%"a
35,980,
R
G

RTINS 0.1 I
LR S lig iy
215 LIRS 1 4 15550800,
rig 1eg R 0y 0, o.09 p7 2y 38,5 200,

IRVRW . iciiitinyp It deg logege cosl SO LI
s gy Saduged SR ey FEpy agted
ittt ssle o o\ SIS

oo\ T T RN \H U

E "”“,”,l“il'g”'?::§ ) F“””ﬂii ﬂﬂégﬂﬁ Eﬁi ]

Py il Uggé'i'gg
0,0

Figure 3: Plots of D,(z) when F and G are both uniform distributions on [-1,1]x[-1, 1].

is still uniform. Then we have, for example, z; = ... = z¢ = (0,0), 27 = .23(cos 6, sin §),
and g9 = .41(cosf,sinf), where 6 is arbitrary. We now see that the threshold value
seems to be n = 7. Also note that Q is the mode of f with value f(0) = %, and [ takes

value 0 on all boundary points.

The general result given next says that an accumulation point of any sequence of Bayes
solutions must be either an interior mode of f or a boundary point of S, as was the case

for one dimension.

Theorem 6 Let S be a bounded region in R% such that for each point T in S, there
exists a sequence of interior points of S convergent to . Suppose that f is continuous
and G is the uniform distribution in S. Let {z,}22; be any sequence of Bayes solutions
for the first vendor. Then any accumulation point of {z,}5, is either an interior mode

of f or a boundary point of S.
Proof: Refer to Tsai et al. (1999). O
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6 Summary

We have studied the Hotelling Beach model for spatial competition in one- and two-
dimensional markets in the spirit of a statistical decision problem. We ask how the first
chooser of a location for his store should act keeping future rivals in mind. We show
that general results are possible under reasonable assumptions, typically symmetry and

unimodality.

The number of future rivals is seen to play a very decisive role. In particular, we
show that even if customers prefer to stay near a central location, the first chooser may
prefer to be located near the boundary if there are a large number of future rivals. In
particular, this eventual affinity to the boundary is true in both the dynamic and the
nondynamic setup, and in the nondynamic case, we can pin things down via asymptotic
expansions for the optimal location. We also show that when n = 1, the minimax and
the dynamic Bayesian formulation lead to the same solution under simple conditions.
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