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GENERAL THEORY OF INFERENTIAL MODELS I.
CONDITIONAL INFERENCE

By Ryan Martin, Jing-Shiang Hwang, and Chuanhai Liu

Indiana University-Purdue University Indianapolis, Academia Sinica, and
Purdue University

As applied problems have grown more complex, statisticians have
been gradually led to reconsider the foundations of statistical in-
ference. The recently proposed inferential model (IM) framework of
Martin, Zhang and Liu (2010) achieves an interesting compromise be-
tween the Bayesian and frequentist ideals. Indeed, inference is based
on posterior probability-like quantities, but there are no priors and
the inferential output satisfies certain desirable long-run frequency
properties. In this two-part series, we further develop the theory of
IMs into a general framework for statistical inference.

Here, in Part I, we build on the idea of making inference by pre-
dicting unobserved auxiliary variables, focusing primarily on an inter-
mediate step of conditioning, whereby the dimension of this auxiliary
variable is reduced to a manageable size. This dimension reduction
step leads to a simpler construction of IMs having the required long-
run frequency properties. We show that under suitable conditions,
this dimension reduction step can be made without loss of informa-
tion, and that these conditions are satisfied in a wide class of models,
including those with a group invariance structure. The important
credibility theorem of Zhang and Liu (2010) is extended to handle
the case of conditional IMs, and connections to conditional inference
in the likelihood framework are made which, in turn, allow for nu-
merical approximation of the conditional posterior belief functions
using the well-known “magic formula” of Barndorff-Nielsen (1983).
The conditional IM approach is illustrated on a variety of examples,
including Fisher’s problem of the Nile.

1. Introduction. R. A. Fisher’s brand of statistical inference (Fisher
1973) is often viewed as some sort of middle-ground between the purely
Bayesian and purely frequentist approaches. Two important examples are
his fiducial argument (Fisher 1935a; Zabell 1992) and his ideas on condi-
tional inference (Fisher 1925, 1934, 1935b). As modern statistical problems
have grown more complex, contemporary statisticians have been gradually
led to reconsider the foundations of statistical inference. Perhaps influenced
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2 MARTIN, HWANG, AND LIU

by ideas of Fisher, a current focus is on achieving some sort of compromise
between the Bayesian and frequentist ideals. Case in point is the recent
work on objective Bayesian analysis with default/reference priors (Berger
2006; Berger, Bernardo and Sun 2009; Ghosh, Delampady and Samanta
2006). An important goal of objective Bayes analysis is to construct pri-
ors for which certain posterior inferences, such as credible intervals, closely
match that of a frequentist, so the spirit of compromise is clear; the cali-
brated Bayesian analysis of Rubin (1984), Dawid (1985), and Little (2010)
has similar motivations. But difficulties remain in choosing good reference
priors for high-dimensional problems so, despite these efforts, a fully satis-
factory objective Bayes theory has yet to emerge. Efron (1998) predicts that
(i) statistical problems in the 21st century will require new tools with good
Bayesian/frequentist properties, and (ii) that “something like fiducial infer-
ence” will be influential to the development of these tools. He was correct
on the first part of his prediction: empirical Bayes methods, for example,
have been influential in analyzing data coming from new high-throughput
devices such as microarrays (Efron 2008, 2010). The second part of Efron’s
prediction remains uncertain. The goal of this series of three papers is to
further develop the notion of inferential models—a new “something like fidu-
cial inference”—into a general framework for statistical inference, partially
validating the second part of Efron’s prediction.

Recently, Martin, Zhang and Liu (2010) present a modification of the
Dempster-Shafer theory of belief functions that has desirable Bayesian-
and frequentist-like qualities in the statistical inference problem. Dempster-
Shafer (DS) theory (Dempster 1966, 1967, 1968, 2008; Shafer 1976), an ex-
tension of Fisher’s fiducial argument, gives a recipe for constructing a pos-
terior belief function over the parameter space Θ using only the sampling
model and observed data; in particular, no prior distribution over Θ is as-
sumed or required. Although DS theory is widely used in computer science
and engineering (Yager and Liu 2008), posterior belief functions for statisti-
cal inference have yet to be widely accepted, perhaps because the numerical
values assigned by these conventional belief functions do not, in general,
have the long-run frequency properties statisticians are familiar with. Mar-
tin, Zhang and Liu (2010) extend the ideas of Zhang and Liu (2010) and
propose a framework of inferential models (IMs) in which the conventional
posterior belief functions are suitably weakened so that certain long-run
frequency properties are realized. These details may be unfamiliar to some
readers (see Section 2), but that the resulting inferential method achieves a
balance between Bayesian and frequentist ideals should be clear.

The empirical results in Zhang and Liu (2010) and Martin, Zhang and

file: MHL-cond.tex date: August 17, 2010



CONDITIONAL IMS 3

Liu (2010) indicate the potential of this IM framework for a wide range of
statistical problems—even high-dimensional problems—but the ideas and
methods presented therein are somewhat ad hoc. In particular, only very
loose guidelines for constructing IMs are given. In this two-part series of
papers, we attempt to sharpen the ideas of Zhang and Liu (2010) and Martin,
Zhang and Liu (2010) to form a general theory of IMs.

Here, in Part I, we stick with the basic but fundamental idea of mak-
ing probabilistic statements about the parameter of interest by predicting
an unobservable auxiliary variable; see Section 2 for a review. Our focus,
however, is on a preliminary step of reducing the dimension of this aux-
iliary variable before attempting its prediction. We consider a dimension
reduction step based on conditioning, and develop a framework of condi-
tional IMs for making inference (hypothesis tests, confidence intervals, etc)
on the unknown parameter. Important connections between our framework
and Fisher’s ideas of sufficiency and conditional inference are made in Sec-
tion 3.5. After introducing the general conditional approach in Section 3.2,
we use several relatively simple textbook examples in Section 3.3 to illustrate
the main ideas. In Section 3.4 we extend the main theorem of Martin, Zhang
and Liu (2010), showing that the desirable long-run frequency properties are
attained over a “relevant subset” of the sample space. Theoretical properties
of conditional IMs are investigated in Section 4 for a broad class of sampling
models which are invariant under a general group of transformation, and
Section 5 provides details of a conditional IM analysis for Fisher’s problem
of the Nile. Some concluding remarks are made in Section 6.

2. Sampling model and statistical a-inference. In this section we
describe the basic sampling model as well as review belief functions and the
construction of inferential models (IMs). Some relatively simple examples
will be considered in Section 2.4.

2.1. Sampling model and a-equation. The sampling model Pθ is a prob-
ability measure on X that encodes the joint distribution of the data vector
X = (X1, . . . , Xn)′. As in Martin, Zhang and Liu (2010), we further assume
that the sampling model Pθ is defined as follows. Take U to be a more-or-less
arbitrary auxiliary space equipped with a probability measure ν. In what
follows, we will occasionally attach the “a-” prefix to quantities/concepts re-
lated to this auxiliary space; that is, we call U the a-space, ν the a-measure,
and so on. Let a : U×Θ → X be a measurable function. Now take a random
draw U ∼ ν, and choose X such that

(2.1) X = a(U, θ).
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4 MARTIN, HWANG, AND LIU

In other words, the sampling model for X given θ, is determined by the a-
measure ν on U and the constraints (2.1). More formally, if we write aθ(u) =
a(u, θ) for fixed θ, then the sampling model Pθ is the push-forward measure
Pθ = ν a−1

θ induced by the a-measure and the mapping aθ. Martin, Zhang
and Liu (2010) call (2.1) the a-equation. This a-equation and its extension
(see Part II) will be of critical importance to our development.

2.2. Belief functions. The primary tools to be used for a-inference are
belief functions, a generalization of probability measures, first introduced
by Dempster (1967) and later formalized by Shafer (1976, 1979). The key
property that distinguishes belief functions from probability measures is
subadditivity : if Bel : A → [0, 1] is a belief function defined on a collection
A of measurable subsets of Θ, then

Bel(A) + Bel(Ac) ≤ 1 for all A ∈ A .

For probability measures, equality obtains for all A, but not necessarily for
belief functions. The intuition is that evidence that does not support A may
not support Ac either. A related quantity is the plausibility function, defined
as

Pl(A) = 1− Bel(Ac).

It follows immediately from the subadditivity property of Bel that

Bel(A) ≤ Pl(A) for all A ∈ A .

For this reason, Bel and Pl have often been referred to as lower and upper
probabilities, respectively (Dempster 1967). The plausibility will be partic-
ularly useful for designing statistical procedures based on a posterior belief
function output; see Section 2.5.

Following the classical Dempster-Shafer theory for statistical inference,
Martin, Zhang and Liu (2010) construct a basic belief function Belx on Θ
as follows. For the general a-equation (2.1), define the set of data-parameter
pairs which are consistent with the a-equation and a particular u in the
a-space U; that is,

Mx(u) = {θ ∈ Θ : x = a(u, θ)}, u ∈ U.

Following Shafer (1976), we call Mx(u) a focal element indexed by u ∈ U.
In general, the focal elements could be non-singletons, so Mx(U) can be
viewed as a random set when U ∼ ν. The belief function is then just the
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CONDITIONAL IMS 5

(conditional) ν-probability that the random set Mx(U), as a function of U ,
falls completely inside a particular set A ⊂ Θ. Specifically,

(2.2) Belx(A) =
ν{u : Mx(u) ⊆ A, Mx(u) 6= ∅}

ν{u : Mx(u) 6= ∅}
.

In all the cases we consider, the denominator will be equal to 1. That Belx
in (2.2) has the subadditivity property in general is easy to see: Belx(A)
and Belx(Ac) tally the conditional ν-probability that Mx(U) is completely
inside and outside of A, respectively, given Mx(U) 6= ∅, but in general there
is positive ν-probability that Mx(U) covers parts of both A and Ac.

The interpretation of Belx(A) is similar to that of a Bayesian posterior
probability. Indeed, the belief function Belx(A) encodes one’s certainty that
the true θ lies in A (Shafer 1976) based solely on the sampling model and
data—no prior on Θ is necessary. But when the sampling model has a group
structure, the belief function will often be the same as the fiducial and
objective Bayes posterior distributions. Therefore, in these as well as other
cases, the basic belief function will not be well-calibrated in the sense of
Rubin (1984). IMs, reviewed in the next section, provide a general framework
in which the basic belief function Belx may be suitably calibrated.

2.3. Inferential models. Martin, Zhang and Liu (2010) introduced the
concept of inferential models (IMs) to extend the scope of posterior belief
functions for statistical inference. The goal is to shrink the numerical values
of the conventional belief function, but just enough so that certain desirable
long-run frequency properties are realized.

The formal definition of an IM is quite simple. Let Belx be the basic belief
function on Θ obtained in the previous section. An IM specifies a new or
weaker belief function, say Bel?x, on Θ such that

(2.3) Bel?x(A) ≤ Belx(A) for all A.

That is, the new belief function is just a shrunken version of the basic belief
function Belx. But one must control the amount by which Belx is shrunk in
order to realize the desirable long-run frequency properties. The shrinking
procedure used by Martin, Zhang and Liu (2010) and Zhang and Liu (2010)
is called the method of weak beliefs and relies on what are called predictive
random sets (PRSs).

Martin, Zhang and Liu (2010) and Zhang and Liu (2010) argue that
inference on θ is equivalent to predicting the true but unobserved value U?

of the a-variable that corresponds to the actual observed data X = x and
the true value of θ. That is, this unobserved U? must satisfy

x = a(U?, θ) for the true θ.
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6 MARTIN, HWANG, AND LIU

Both fiducial and DS inference can be understood from this viewpoint, but
they each try to predict U? with a draw U ∼ ν. But, intuitively, this is
overly optimistic since U will, in general, miss U? with ν-probability 1. The
method of weak beliefs relaxes this assumption and instead tries to hit the
target U? with a random set S(U) ⊇ {U}, where U ∼ ν. The set S(U) is
called a predictive random set (PRS). Some simple examples of PRSs can
be found in Section 2.4.

For a given set-valued map S, define the enlarged focal elements

(2.4) Mx(u;S) =
⋃

u′∈S(u)

{θ : x = a(u′, θ)}, u ∈ U.

It is obvious that Mx(u;S) ⊇ Mx(u), with equality if and only if S(u) = {u}.
Moreover, Martin, Zhang and Liu (2010) show that

(2.5) Belx(A;S) :=
ν{u : Mx(u;S) ⊆ A, Mx(u;S) 6= ∅}

ν{u : Mx(u;S) 6= ∅}

defines a bonafide IM in the sense of (2.3). Note that taking S(U) = {U}
produces the basic belief function (2.2). This trivial choice of PRS is not
satisfactory for inference (Definition 1) but it will be used for comparing
different a-equation/a-measure pairs (Definition 2).

It is intuitively clear that not every S will lead to good frequency prop-
erties of the belief function BelX(·;S). For this we must place some extra
conditions on S in the form of coverage probabilities. Define

(2.6) Q(u;S) = ν{U : S(U) 63 u}, u ∈ U,

which is the probability that the PRS S(U) misses its target u. The condition
imposed on S is that Q(U?;S), a function of the unobserved U? ∼ ν, should
be probabilistically small.

Definition 1. S = S(U) is credible for predicting U? at level α if

(2.7) ν{U? : Q(U?;S) ≥ 1− α} ≤ α.

The following theorem relates credibility of PRSs to desirable frequency
properties of the enlarged belief function (2.5).

Theorem 1 (Martin-Zhang-Liu). Suppose S is credible for predicting
U? at level α, and Mx(U ;S) 6= ∅ with ν-probability 1 for all x. Then for any
assertion A ⊂ Θ, BelX(A;S) in (2.5), as a function of X, satisfies

(2.8) Pθ{BelX(A;S) ≥ 1− α} ≤ α, ∀ θ ∈ Ac.
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CONDITIONAL IMS 7

Therefore, IMs formed via the method of weak beliefs with credible PRSs
will have the desired long-run frequency properties. The next section gives
some simple examples, and Section 2.5 will show how Theorem 1 relates
to the inference problem. We refer to Ermini Leaf and Liu (2010) for dis-
cussion on the case when the fundamental condition “Mx(U ;S) 6= ∅ with
ν-probability 1 for all x” does not hold.

At this point we should emphasize that the IM approach is substantially
different from the DS and fiducial theories. While belief functions are used to
make inference, we do not adopt the fundamental operation of DS, namely
Dempster’s rule of combination (Shafer 1976, Ch. 3), and therefore we avoid
the potential difficulties it entails (Ermini Leaf, Hui and Liu 2009; Wal-
ley 1987). Moreover, since the belief functions we use for inference are not
probability measures, and we do not operate on them as if they were, our
conclusions cannot coincide with those resulting from a fiducial (or Bayesian)
analysis. There are similarities, however, to the imprecise prior Bayes ap-
proach (Walley 1996) and the robust Bayes approach (Berger 1984). But
perhaps the most important difference is our focus on long-run frequency
properties—DS and fiducial are void of such frequentist concerns.

2.4. Examples. Next we consider several relatively simple textbook-style
examples; more complex models appear in Sections 3 and 5. For each ex-
ample, the a-measure ν is just Unif(0, 1), and for PRSs we will take the
set-valued mapping

S(u) = [u/2, (1 + u)/2].

Other choices for S(u) include [0, u], [u, 1], and {u′ : |u′ − 0.5| ≤ |u− 0.5|}.
These will produce slightly different IMs for the parameter of interest, but
each can be shown to satisfy the conditions of Theorem 1.

Example 1 (Normal model). Suppose X is a single sample from a
N(µ, σ2) population. Assume, for simplicity, that the variance is known,
say σ2 = 1. We have the simple model X = µ + Φ−1(U), where Φ is the
distribution function of N(0, 1). The focal elements are singletons, so the ba-
sic belief function is a probability measure, namely the N(x, 1) distribution.
Example 4 of Martin, Zhang and Liu (2010) gives a general formula, along
with plots, of a weakened belief function for a flexible class of PRSs.

Example 2 (Exponential model). Suppose X is a single sample from a
Exp(λ) population, where λ > 0 is a scale parameter. We have the simple
model X = λF−1(U), where F is the distribution function of Exp(1). For
A = {λ ≤ λ0}, the basic belief function is easily found to be

Belx(A) = ν{u : x ≤ λ0F
−1(u)} = exp{−x/λ0}.
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8 MARTIN, HWANG, AND LIU

For the choice of PRS S(u) above, and the same assertion A = {λ ≤ λ0},
the weakened belief function is

Belx(A;S) = ν{u : x ≤ λ0F
−1(u/2)} = 1− 2(1− exp{−x/λ0}).

That Belx(A;S) < Belx(A) is immediately clear.

The reader may notice that Examples 1 and 2 have a location-scale struc-
ture, and that the basic belief function (as well as the fiducial distribution)
corresponds to the Bayesian posterior probability when the parameter is
given the right-invariant Haar prior. It turns out that this is a general phe-
nomenon in group invariant problems; see Fraser (1961).

Example 3 (Bernoulli model). Flip a coin with probability θ of landing
heads, and let X be 1 or 0 depending on whether the coin lands heads or
tails. Then X ∼ Ber(θ). A simple a-equation for this model is X = I{U≤θ},
where IA is the indicator that event A occurs. The focal element is

Mx(u) =

{
[0, u] if x = 0
[u, 1] if x = 1.

Notice that these focal elements are not singletons; therefore, the belief
function cannot be a probability measure. For an assertion A = {θ ≤ θ0},
the basic belief function is

Belx(A) =

{
θ0 if x = 0
I{θ0=1} if x = 1.

The intuition here is that if tails is observed, then we believe that all values
of θ are equally likely, but if heads is observed, then we cannot put any non-
trivial upper bound on θ. For the PRS S(u) above, the new focal elements
are easily seen to be

Mx(u;S) =

{
[0, (1 + u)/2] if x = 0
[u/2, 1] if x = 1,

so the weakened belief function is

Belx(A) =

{
max{2θ0 − 1, 0} if x = 0
I{θ0=1} if x = 1.

We should point out that this IM is a bit conservative for the particular
assertion A in question since the basic focal elements Mx(u) themselves are
not singletons.
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CONDITIONAL IMS 9

Example 4 (Poisson model). In this example we find that the a-equation
need not have a nice simple expression; here, as well as in other discrete
problems, the a-equation is just a rule for defining data based on a given
parameter and a-variable. Suppose X is a single sample from a Poi(λ) pop-
ulation. Then the sampling model can be written as

Fλ(X − 1) ≤ U < Fλ(X), U ∼ Unif(0, 1),

where Fλ is the distribution function of Poi(λ). Integration-by-parts reveals
that Fλ(x) = 1−Gx+1(λ), where Gα(λ) is a Gam(α, 1) distribution function.
Then the sampling model above is equivalent to

GX+1(λ) ≤ U < GX(λ), U ∼ Unif(0, 1),

where we have used the fact that U and 1−U are both Unif(0, 1). Therefore,
given X = x, the basic focal elements are intervals of the form

Mx(u) =
[
G−1

x+1(u), G−1
x (u)

)
.

For an assertion A = {λ ≤ λ0}, the basic belief function is

Belx(A) = ν{u : G−1
x (u) ≤ λ0} = Gx(λ0).

For the weakened version, we have

Mx(u;S) =
[
G−1

x+1(u/2), G−1
x ((1 + u)/2)

)
,

so the new belief function is

Belx(A;S) = max{2Gx(λ0)− 1, 0}.

Again, this IM is somewhat conservative for the interval assertion A.

2.5. Using IMs for inference. In this section we describe how belief or
plausibility functions can be used for point estimation and hypothesis test-
ing. This will further highlight the importance of Theorem 1.

The plausibility function Plx(·;S) is more convenient for use in the infer-
ence problem. Indeed, for any A ⊂ Θ, Plx(A;S) measures the amount of ev-
idence in the observed data x that does not contradict the claim “θ ∈ A.” So
belief/plausibility functions are similar to Fisher’s p-value in the sense that
both tools attempt to assign post-data measures of (un)certainty to claims
about the parameter of interest. One advantage of plausibility functions is
that their interpretation is easier. Specifically, plausibility functions measure
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10 MARTIN, HWANG, AND LIU

one’s uncertainty about the claim “θ ∈ A” given data, while p-values mea-
sure the probability of an observed event given the claim is true—reasoning
about θ is direct with plausibility but somehow indirect with p-values.

Another advantage of belief/plausibility functions is that they can easily
be used to design classical inference tools that satisfy the usual frequentist
properties. For clarity, we reformulate the result of Theorem 1 in terms of
the plausibility function.

Corollary 1. Under the conditions of Theorem 1,

(2.9) Pθ{PlX(A;S) ≤ α} ≤ α, ∀ θ ∈ A.

Hypothesis testing. Consider a “null hypothesis” H0 : θ ∈ A, where A is a
subset of Θ. Then an IM-based counterpart to a frequentist testing rule is
of the following form:

(2.10) reject H0 if Plx(A;S) ≤ t for a specified threshold t ∈ (0, 1).

According to Corollary 1, if the PRS S is credible, then the probability of a
Type I error for such a rejection rule is

Pθ{PlX(A;S) ≤ t} ≤ t.

So in order for the test (2.10) to control the probability of a Type I error at
a specified α ∈ (0, 1), one should reject H0 if the plausibility is ≤ α.

Interval estimation. Consider a sequence of assertions At = {t} as t ranges
over Θ. Now, for a counterpart to a frequentist confidence region, define the
plausibility region

(2.11) Πx(α) = {t : Plx(At;S) > α}.

Now the coverage probability of the plausibility region (2.11) is

Pθ{ΠX(α) 3 θ} = Pθ{PlX(Aθ;S) > α}
= 1− Pθ{PlX(Aθ;S) ≤ α} ≥ 1− α,

where the last inequality follows from Corollary 1. Therefore, this plausibility
region has at least the nominal coverage probability.
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CONDITIONAL IMS 11

3. Efficiency and conditioning. In Section 2 it was shown that cred-
ibility of the PRS was of fundamental importance. Martin, Zhang and Liu
(2010) argue, however, that credibility cannot be the only consideration.
They define a second criterion—efficiency—and formulate the choice of PRS
as a constrained optimization problem. But this approach is for a fixed
a-equation. Here we focus on a first step that modifies the a-equation to
simplify the construction of a credible and efficient PRS. After this initial
dimension reduction step is taken, the construction of an efficient IM is just
as in Martin, Zhang and Liu (2010).

3.1. Motivation: dimension reduction. In the examples in Section 2.4,
the dimension of the parameter is the same as that of the a-variable. But
in general these dimensions will not be the same; in particular, the dimen-
sion of the a-variable will often be larger than that of the parameter. It is
intuitively clear that efficient prediction of a-variables becomes more diffi-
cult as the dimension grows—this is basically the curse of dimensionality.
In fact, constructing efficient PRSs for high-dimensional U? can be quite
challenging; see Martin, Zhang and Liu (2010). Therefore, we propose an
initial dimension reduction step to make construction of PRSs simpler and
the resulting a-inference more efficient.

Example 5 (Normal model, cont.). Suppose X1, . . . , Xn are iid observa-
tions from a N(µ, 1) model with common unknown mean µ ∈ R. Then there
are n copies of the a-equation Xi = µ + Ui. Stacking these n a-equations in
vector notation we have X = µ1n +U , where 1n is an n-vector of unity, and
U ∈ Rn is distributed as Nn(0, I). Straightforward application of the reason-
ing in Example 1 suggests that inference on µ be carried out by predicting
the unobserved auxiliary variable U? in Rn. But efficient prediction of U?

would be challenging if n is large, so reducing the dimension of U?—ideally
to one dimension—would be a desirable first step.

In a likelihood-based inferential framework, an obvious approach to avoid
the difficulty of the previous example would be to first reduce the data to
a sufficient statistic, the sample mean in this case, and construct a new
a-equation. In Section 3.2 we develop a framework that justifies this sort
of intuition. We should mention, however, that while there are similarities
between our conditioning approach and data reduction via sufficiency, the
two are fundamentally different; see Sections 3.2, 3.3, and 3.5.

3.2. Conditional IMs. The main goal of this section is to effectively re-
duce the dimension of the a-variable U? to be predicted by conditioning.
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12 MARTIN, HWANG, AND LIU

This is summarized in Theorem 2 below. But first we define formally what
it means for two a-equation/a-measure pairs—a-pairs—to be equivalent for
inference on θ. Recall the definition of the basic belief function (2.2).

Definition 2. Consider two general a-pairs, say

p1(X) = a1(U1, θ), U1 ∼ ν1 and p2(X) = a2(U2, θ), U2 ∼ ν2.

These two are said to be equivalent for inference on θ if the corresponding
basic belief functions Bel1x and Bel2x are identical.

As a simple example, it is easy to check that

X = µ + U, U ∼ N(0, 1) and X = µ + Φ−1(U), U ∼ Unif(0, 1)

are equivalent in the sense of Definition 2 for inference on µ in the normal
mean problem of Example 1. In this example, between the a-pairs listed
above at least, there is no reason to prefer one over the other. In more
complex problems, however, the dimension of the a-variable may vary over
the candidate a-pairs. Our main goal is to show, via a conditioning argument,
that we may choose the one with the lowest a-variable dimension without
any loss of information.

Theorem 2. Suppose that the basic a-equation x = a(u, θ) in (2.1) can
be expressed in the form

(3.1) p1(x) = a1(ϕ1(u), θ) and p2(x) = a2(ϕ2(u)),

for suitable mappings p1, p2, a1, a2, ϕ1, and ϕ2. Write v1 = ϕ1(u) and
v2 = ϕ2(u) for the new a-variables, and assume that the mapping u 7→
(v1, v2) is one-to-one and does not depend on θ. In addition, assume that
the conditional focal element

M̃x(v1) = {θ : p1(x) = a1(v1, θ)}

is non-empty with νϕ−1
1 -probability 1. Then the original a-pair is equivalent,

in the sense of Definition 2, to the a-pair with conditional a-equation

(3.2) p1(x) = a1(v1, θ)

and conditional a-measure ν̃p being the conditional distribution of V1, given
that a2(V2) equals the observed value p2(x) = p.
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Proof. The basic a-equation for the original a-pair is

Belx(A) =
ν{u : Mx(u) ⊆ A, Mx(u) 6= ∅}

ν{u : Mx(u) 6= ∅}
.

The assumption that the conditional focal element is non-empty implies that
the belief function corresponding to the conditional a-pair is

B̃elx(A) = ν̃p{v : M̃x(v) ⊆ A} =
ν{u : M̃x(u) ⊆ A, a2(ϕ2(u)) = p}

ν{u : a2(ϕ2(u)) = p}
,

where p is the observed value p2(x). It is easy to check that the numerator
of Belx(A) is

ν{u : M̃x(ϕ1(u)) ⊆ A, M̃x(ϕ1(u)) 6= ∅, a2(ϕ2(u)) = p},

and since M̃x(ϕ1(u)) 6= ∅ with νϕ−1
1 -probability 1, this reduces to

ν{u : M̃x(ϕ1(u)) ⊆ A, a2(ϕ2(u)) = p}.

Likewise, the denominator of Belx(A) is simply ν{u : a2(ϕ2(u)) = p}. Taking
the ratio we get exactly B̃elx(A), which proves the claim.

Remark 1. The dimension reduction will be achieved by conditioning
since, generally, ϕ1(u) will be of much lower dimension than u itself; in
fact, ϕ1(u) will frequently be a “sufficient statistic” type of quantity, so its
dimension will be the same as θ rather than x. See Section 3.5 below.

The significance of Theorem 2 is that we obtain a new conditional a-
equation (3.2) which, together with a conditional a-measure ν̃p, for p =
p2(x), can be used to construct a conditional IM along the lines in Sec-
tion 2.3. That is, first specify a PRS S = S(V ) for predicting the unobserved
a-variable V ? = ϕ1(U?), and define the conditional focal elements

(3.3) M̃x(v;S) =
⋃

v′∈S(v)

{θ : p1(x) = a1(v′, θ)}.

Then the corresponding belief function is given by

(3.4) B̃elx(A;S) = ν̃p{v : M̃x(v;S) ⊆ A}, A ⊆ Θ.

Then this belief function may be used, as in Section 2.5, to make inference
on the unknown parameter θ. We revisit our examples in Section 3.3.
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14 MARTIN, HWANG, AND LIU

The very same credibility condition (Definition 1) can be considered and,
in the case where ν̃p is independent of x, the desirable frequency properties
for B̃elx(A;S) in (3.4) follow immediately from Theorem 1. Surprisingly, ν̃p

is indeed independent of x in a number of important examples. But more
generally, we would like to extend the notion of credibility and the result of
Theorem 1 to the case where the conditional a-measure ν̃p indeed depends
on the observed data x. This is the topic of Section 3.4 below.

3.3. Examples. Here we revisit those examples presented in Section 2.4
to demonstrate the dimension reduction technique in Theorem 2.

Example 6 (Normal model, cont.). Suppose X1, . . . , Xn is an iid sample
from a N(µ, σ2) population. If σ2 = 1 is known, then the basic a-equation
can be written as

X = µ + U, and Xi −X = Ui − U, i = 1, . . . , n.

For an independent sample U1, . . . , Un from N(0, 1), the sample mean U is
independent of Ui−U , i = 1, . . . , n, and distributed as N(0, n−1). Therefore,
there is no need to predict the entire n-vector of unobserved a-variables; IMs
can be constructed for inference on µ based on predicting a single a-variable
with a priori distribution N(0, n−1). More generally, for inference on (µ, σ2),
the basic a-equation reduces to

{X = µ + U, s2(X) = σ2s2(U)} and
Xi −X

s(X)
=

Ui − U

s(U)
,

where s2(x) = 1
n−1

∑n
i=1(xi − x)2 denotes the sample variance. The vector

of “z-scores” on the far-right of the previous display is known as the sample
configuration, and is ancillary (maximal invariant) in general location-scale
problems. Since U and s2(U) are independent, IMs for (µ, σ2) can be built
based on predicting V ? = (U?

, s2(U?)) using draws from the respective
marginal distributions. The problem of, say, inference on µ alone when both
µ and σ2 are unknown is the topic of Part II of the series.

Example 7 (Exponential model, cont.). For an iid sample X1, . . . , Xn

from an Exp(λ) population, the basic a-equation can be rewritten as

T (X) = λT (U), and
Xi

T (X)
=

Ui

T (U)
, i = 1, . . . , n,

where T (x) =
∑n

i=1 xi is the sample total. The general result of Fraser (1966)
shows that T (U) and the vector {Ui/T (U) : i = 1, . . . , n} are independent,
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CONDITIONAL IMS 15

so an IM for inference on λ can be built based on predicting V ? = T (U?)
with draws from its marginal distribution Gam(n, 1).

Example 8 (Bernoulli model, cont.). Suppose X1, . . . , Xn is an iid sam-
ple from a Ber(θ) population. An obvious extension of the model in Exam-
ple 3 is to take Xi = I{Ui≤θ}, where U1, . . . , Un are iid Unif(0, 1). It turns out,
however, that the conditioning approach does not easily apply to the model
in this form. Here we consider an alternative formulation of the sampling
model that leads to a very simple conditioning argument.

• Sample T , the total number of successes, by drawing U0 ∼ Unif(0, 1)
and defining T such that

(3.5) Fn,θ(T ) ≤ U0 < Fn,θ(T + 1),

where Fn,θ(t) denotes the distribution function of Bin(n, θ).
• Given T , randomly allocate the T successes and n− T failures among

the n trials. That is, randomly sample (U1, . . . , Un) from the subset of
{0, 1}n consisting of exactly T ones, and set Xi = Ui, i = 1, . . . , n.

We have defined the sampling model so that the decomposition (3.1) is ex-
plicit: the first step involves the parameter θ and a lower-dimensional sum-
mary of the data T and a-variable U0, and the second is void of θ. There-
fore, according to Theorem 2, we may consider the conditional a-equation
(3.5), and it is easy to verify (via Bayes theorem) that the conditional a-
measure—the distribution of U0 given (U1, . . . , Un)—is still Unif(0, 1). There-
fore, a-inference on θ can proceed by predicting the unobserved U?

0 in the
conditional a-equation (3.5). Note that this is exactly the result obtained by
Zhang and Liu (2010) when only a single T ∼ Bin(n, θ) is observed.

Example 9 (Poisson model, cont.). Suppose X1, . . . , Xn are indepen-
dent observations from a Poi(λ) population. We follow the approach de-
scribed in Example 8 to construct a sampling model that leads to a simple
conditioning argument.

• Sample T , the sample total, by drawing U0 ∼ Unif(0, 1) and defining
T such that

(3.6) Fnλ(T ) ≤ U0 < Fnλ(T + 1),

where Fnλ(t) is the distribution function of Poi(nλ).
• Randomly allocate portions of the total to the observations X1, . . . , Xn.

That is, sample (U1, . . . , Un) from a Mult(T ;n−11n) distribution and
set Xi = Ui, i = 1, . . . , n.
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16 MARTIN, HWANG, AND LIU

Again, like in Example 8, the decomposition (3.1) of the sampling model into
two components is made explicit. By Theorem 2 we may drop the second
part, which does not involve λ, and consider the conditional a-equation
(3.6). Similarly, it is easy to check that the conditional a-measure is simply
Unif(0, 1). Therefore, inference on λ can be carried out by predicting the
unobserved U?

0 in the conditional a-equation (3.6).

The first two examples describe models which have a location and scale
structure, respectively. (Example 8 has a similar, but less obvious, type
of symmetry.) We show in Section 4.2 that Theorem 2 can be applied in
problems that have a more general group transformation structure.

Remark 2. The reader will have noticed that in each of the four exam-
ples presented above, the dimension reduction corresponds to that obtained
by working with the data summarized by a sufficient statistic. However,
the decomposition (3.1) is not unique, and the choice to use the famil-
iar sufficient statistics is simply for convenience. For example, in Exam-
ple 6, for inference on µ based on X1, . . . , Xn iid N(µ, 1), rather than using
the conditional a-equation X = µ + U , we could have equivalently used
X1 = µ + U1 but with conditional a-measure being the distribution of U1

given {Ui − U1 : i = 2, . . . , n}. By choosing the average U we can make use
of the well-known facts that U has a normal distribution and is independent
of the residuals {Ui−U : i = 1, . . . , n}. The point is that data reduction via
sufficiency singles out only an important special case of the decomposition
(3.1) used to construct a conditional IM. See Section 3.5.

3.4. Conditional credibility. The goal of this section is to extend the
notion of credibility and the results of Theorem 1 to the case where the
conditional a-measure ν̃p depends on x through p = p2(x).

Let S be a set-valued mapping and, following the development in Sec-
tion 2.3, define the map

Qp(v;S) = ν̃p{V : S(V ) 63 v}.

This is just like the non-coverage probability in (2.6) but evaluated under
the conditional distribution ν̃p for V . Analogous to Definition 1 we define
conditional credibility as follows.

Definition 3. A PRS S = S(V ) for predicting V ? is conditionally
credible at level α given p2(X) = p, if

(3.7) ν̃p{V ? : Qp(V ?;S) ≥ 1− α} ≤ α.
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For the focal elements M̃x(v;S) in (3.3) and the corresponding belief
function B̃elx(·;S), we have a conditional version of Theorem 1.

Theorem 3. Suppose S is conditionally credible for predicting V ? at
level α, given p2(X) = p, and that Mx(V ;S) 6= ∅ with ν̃p-probability 1 for
all x such that p2(x) = p. Then for any assertion A ⊂ Θ, B̃elX(A;S) in
(3.4), as a function of X, satisfies

(3.8) Pθ{B̃elX(A;S) ≥ 1− α | p2(X) = p} ≤ α, ∀ θ ∈ Ac.

Proof. The proof follows that of Theorem 3.1 in Zhang and Liu (2010).
Let θ denote the true value of the parameter, and assume θ ∈ Ac. Then

B̃elx(A;S) ≤ B̃elx({θ}c;S)

= ν̃p{v : M̃x(v;S) 63 θ} = Qp(V ?;S)

for each x satisfying p2(x) = p. Therefore, B̃elx(A;S) ≥ 1 − α implies
Qp(V ?;S) ≥ 1 − α and, consequently, the conditional probability of the
former can be no more than that of the latter. That is,

Pθ{B̃elX(A;S) ≥ 1− α | p2(X) = p} ≤ ν̃p{V ? : Qp(V ?;S) ≥ 1− α},

and the result follows from the conditional credibility of S.

Corollary 2 below shows that under slightly stronger conditions the the
long-run frequency property (3.8) holds unconditionally ; the proof follows
immediately from the law of total probability.

Corollary 2. Suppose that the conditions of Theorem 3 hold for almost
all p. Then (3.8) holds unconditionally, i.e.,

Pθ{B̃elX(A;S) ≥ 1− α} ≤ α, ∀ θ ∈ Ac.

3.5. Relations to sufficiency and classical conditional inference. Fisher’s
theory of sufficiency beautifully describes how the observed data can be
reduced in such a way that no information about the parameter of interest
θ is lost. In cases where the dimension reduction via sufficiency alone is
unsatisfactory—i.e., the dimension of the sufficient statistic is greater than
that of the parameter—there is an equally beautiful theory of conditional
inference also due to Fisher but later built upon by others; see Reid (1995),
Fraser (2004), and Ghosh, Reid and Fraser (2010) for reviews. We have
already seen a number of instances where familiar things like sufficiency,
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18 MARTIN, HWANG, AND LIU

ancillarity, and conditional inference have appeared in the new approach.
But while there are some similarities, there are also a number of important
differences which we mention here.

(i) Fisherian sufficiency requires a likelihood function to define and justify
the data reduction. There is no likelihood function in the proposed frame-
work, so a direct reduction of the observed data cannot be justified. However,
we have a-variables with valid distributions which we are allowed to manip-
ulate more-or-less as we please, and for certain (convenient) manipulations
of these a-variables, the familar data reduction via sufficiency emerges.

(ii) The proposed approach to dimension reduction is, in some sense, more
general than that of sufficiency. The key feature is the conditional a-measure
attached to the decomposition (3.1). In the proposed framework, almost any
choice of decomposition is valid, and we see immediately the effect of our
choice: a “bad” choice may have a complicated conditional a-measure, while
a “good” choice might be much easier to work with. In other words, the
conditional a-measures play the role of assigning a preference ordering to
the various choices of decompositions (3.1).

(iii) In problems where the reduction via sufficiency is unsatisfactory (i.e.,
when the minimal sufficient statistic has dimension greater than that of the
parameter), the classical approach is to find a suitable ancillary statistic
to condition on. A number of well-known examples (see Ghosh, Reid and
Fraser 2010) suggest that this task can be difficult in general. In the proposed
system, the choice of decomposition (3.1) is not unique, but the procedure
is basically automatic for each fixed choice.

(iv) Although they contain no information about the parameter of inter-
est, ancillary statistics are important for conditional inference in the classical
sense as they identify a relevant subset of the sample space to condition on.
It turns out that there are actually two notions of “relevant subsets” in the
proposed framework. The first is in the conditional a-measure: building an
IM based on the conditional a-measure effectively restricts the distribution
of the a-variable to a lower-dimensional subspace defined by the observed
value of a2(ϕ2(U)). The second is in the conditional credibility theorem: the
long-run frequency properties of the conditional IM are evaluated on the
subset of the sample space defined by the observed value of p2(X).

4. Theory for group transformation models. In this section we
derive some general properties of conditional IMs for a fairly broad class of
models which are invariant under a suitable group of transformations. For
the most part, our notation and terminology matches that of Eaton (1989).
The analysis is different from, but shares some similarities with Fraser’s
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work on fiducial/structural inference in group invariant problems.

4.1. Group transformation models. Consider a special case where Pθ is
invariant under a group G of transformations g mapping X onto itself. That
is, there is a corresponding group G of transformations mapping Θ onto itself
such that if X ∼ Pθ and g ∈ G , then gX ∼ Pgθ for a suitable g ∈ G . Here
gx denotes the image of x under g. A number of popular models fit into this
framework: location-scale data (e.g., normal, Student-t, gamma), directional
data (e.g., Fisher-von Mises), and various multivariate/matrix-valued data
(e.g., Wishart). Next we give some notation and definitions.

Suppose that G is transitive; i.e., for any pair θ1, θ2 ∈ Θ there exists g ∈ G
such that θ1 = gθ2. Choose an arbitrary reference point θ0 ∈ Θ. Then the
model X ∼ Pθ may be written in a-equation form as

(4.1) X = gU,

where U ∼ ν ≡ Pθ0 , and g is such that the corresponding g produces θ = gθ0.
For a point x ∈ X, the orbit Ox of x with respect to G is defined as

Ox = {gx : g ∈ G } ⊆ X;

that is, Ox is all possible images of x under G . If G is transitive, then
Ox = X. A function f : X → X is said to be invariant if it is constant on
orbits; i.e., if f(gx) = f(x) for all x and all g. A function f is a maximal
invariant if f(x) = f(y) implies y = gx for some g ∈ G . A related concept is
equivariance. A function t : X → Θ is equivariant if t(gx) = g t(x). Roughly
speaking, an equivariant function preserves orbits in the sense that gx ∈ X
is mapped by t to a point on the orbit of t(x) ∈ Θ.

4.2. Decomposition of the a-equation. The examples in Section 3.3 illus-
trate that the method of conditioning can be useful for reducing the dimen-
sion of the a-variable U? to be predicted. This reduction, however, requires
existence of a decomposition (3.1) of the basic a-equation. It would, there-
fore, be useful to find problems where such a decomposition exists. Next we
give one general result along these lines.

Let t : X → Θ be an equivariant function, and let f : X → X be a
maximal invariant function, each with respect to the underlying groups G
and G . Then a-equation (4.1) can be equivalently written as

(4.2) t(X) = g t(U) and f(X) = f(U),

and this implicitly defines the mappings pj , aj , and ϕj (j = 1, 2) in Theo-
rem 2. Then the conditional a-measure ν̃p is the distribution of t(U) when
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U ∼ ν = Pθ0 , given the value p = f(x) of the maximal invariant f(U). We
summarize this result as a theorem.

Theorem 4. If Pθ is invariant with respect to a group G of mappings
on X and if the corresponding group G on Θ is transitive, then there is an
a-equation decomposition (4.2), defined by an equivariant function t(·) and
a maximal invariant function f(·).

If t(·) is a minimal sufficient statistic, and if the group operation on t(X)
induced by G is transitive—which is the case in Examples 6 and 7 where G is
the translation and scaling group, respectively—then Fraser (1966) showed
that t(U) and f(U) are independent, so ν̃p = ν = Pθ0 . In such cases, there
is no difficulty in constructing a conditional IM that satisfies the conditions
of Theorem 1. When t(U) and f(U) are not independent, things are not so
simple. Fortunately, there is a general expression for the exact distribution of
t(U) given f(U) in group transformation problems, due to Barndorff-Nielsen
(1983), which we discuss next.

4.3. Conditional a-measures. Consider a group invariant model where
the parameter θ belongs to an open subset of Rk. Assume also that the
maximum likelihood estimate (MLE) of θ exists and is unique. In such cases,
the MLE θ̂(x) is an equivariant statistic (Eaton 1989, Theorem 3.2), so t(·)
in (4.2) can be taken as θ̂(·). That is, the conditional a-equation is just

θ̂(x) = gθ̂(u).

If f(x) is a maximal invariant as in Section 4.2, then furthermore assume
that the map x 7→ (θ̂(x), f(x)) is one-to-one. Unlike the classical theory of
invariant statistical models, however, in our context, the data x is fixed and
the a-variable u varies. For this particular model, the a-measure is a fixed
member of this invariant family, and the same maps that apply to x are
applied to u as well. Therefore, using the notation of Section 3, our focus
will be on the distribution of V1 = θ̂(U), the MLE of θ0, a known quantity,
given V2 = f(U). Under these conditions, Barndorff-Nielsen (1983) shows
that the exact conditional distribution has a density

(4.3) h(v1|v2, θ0) ∝ |j(v1)|k/2 exp{`(θ0)− `(v1)},

where `(θ) = `(θ; v1, v2) and j(θ) = j(θ; v1, v2) are, respectively, the log-
likelihood function and the observed Fisher information matrix, evaluated
at θ. Formula (4.3), called the “magic formula” in Efron (1998) and discussed
in more detail in Reid (1995, 2003), is exact for some models, including group
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transformation models, and is accurate up to at least O(n−1) for many other
models with v1 a general (approximately) ancillary statistic.

So when θ̂(U) and f(U) are not independent, the conditional distribution
depends on the observed value of f(U) and, hence, on the data x. Conse-
quently, the credibility results of Section 2 fail to hold (Fisher 1936). But in
such cases, the new conditional credibility results presented in Section 3.4
are available to help one build a conditionally credible IM.

Notice that a posterior belief function can be constructed based on either
the true conditional a-measure ν̃p or its approximation based on (4.3). Since
(4.3) is close to a normal density function, one would expect that the latter
approximate posterior belief function might be easier to compute. Therefore,
an interesting practical question is how fast does the difference between
the two posterior belief functions vanish as n → ∞? This question will be
considered in more detail elsewhere.

5. Fisher’s problem of the Nile. Suppose two independent samples,
namely X1 = (X11, . . . , X1n) and X2 = (X21, . . . , X2n), are available from
Exp(θ) and Exp(1/θ) populations, respectively. The goal is to make inference
on the unknown θ > 0. This is referred to as a “Problem of the Nile”
based its connection to an applied problem of Fisher (1973) concerning the
fertility of land in the Nile river valley. From a statistical point of view,
this is an interesting example where the ML estimate is not sufficient, so
sampling distributions conditioned on a suitable ancillary statistic are more
appropriate for tests, confidence intervals, etc.

The construction of an IM for inference on θ proceeds as in Example 7 by
first constructing conditional a-equations for each of the X1 and X2 samples.
If the basic a-equations are

X1 = θU1 and X2 = θ−1U2,

where U1 = (U11, . . . , U1n) and U2 = (U21, . . . , U2n) are independent Exp(1)
samples, then the conditional a-equations are

(5.1) T (X1) = θV1 and T (X2) = θ−1V2,

where Vj = T (Uj), j = 1, 2, and T (x) =
∑n

i=1 xi. The conditional a-measures
are just like in Example 7; that is, V1, V2 ∼ Gam(n, 1).

But this naive reduction produces a two-dimensional a-variable (V1, V2)
for inference on a scalar parameter θ. Efficiency can be gained by reducing
the a-variable further, so we consider a slightly more sophisticated reduction
step. In particular, consider

(5.2) p1(X) = θV1 and p2(X) = V2,
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where

p1(X) =
√

T (X1)/T (X2) p2(X) =
√

T (X1)T (X2)

V1 =
√

T (U1)/T (U2) V2 =
√

T (U1)T (U2).

We now have an a-equation decomposition of the form (3.1) with two scalar
a-variables—one connected to the parameter θ and the other fully observed.
Therefore, by Theorem 2, an IM for θ may be built by predicting the un-
observed a-variable V ?

1 from its conditional distribution given the observed
value of V ?

2 . It turns out that this conditional a-measure is a known distribu-
tion, namely a generalized inverse Gaussian distribution (Barndorff-Nielsen
1977). Its density function is of the form

(5.3) f(v1|v2 = p) =
1

2v1K0(2p)
exp{−p(v−1

1 + v1)},

where K0(·) is the modified Bessel function of the second kind. As a final
simplifying step, write the conditional a-equation as

(5.4) p1(X) = θF−1
p (U), U ∼ Unif(0, 1),

where Fp is the distribution function of V1, given the observed value p of
V2, corresponding to the density in (5.3). Therefore, inference about θ can
proceed by predicting the unobserved uniform variable U? in (5.4).

The reader will no doubt recognize some of the aforementioned quantities
from the usual likelihood-based approach to this problem. In particular, the
following facts are mentioned by Ghosh, Reid and Fraser (2010):

• p1(X) is the maximum likelihood estimate of θ,
• p2(X) is an ancillary statistic, and
• the pair (p1, p2)(X) is jointly minimal sufficient for θ.

But our approach is different from the usual likelihood-based approach in a
number of ways. In particular, the conditioning argument described above
is just a first step towards inference on θ; the next steps towards an IM are
to choose a PRS for predicting the unobserved U? in (5.4) and to calculate
the corresponding posterior belief function.

6. Discussion. The theory of IMs gives a general framework in which
posterior belief functions are produced for inference. Two important prop-
erties of the IM approach are that no prior distribution needs to be specified
on the parameter space, and that the posterior belief functions are designed
in such a way that desirable long-run frequency properties are realized. The
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fundamental idea behind this approach is that inference about the param-
eter θ is equivalent to predicting the unobserved a-variable(s) U?. Zhang
and Liu (2010) and Martin, Zhang and Liu (2010) give a general introduc-
tion to this IM approach, but their guidelines are fairly limited and there
examples consider rather complicated PRSs for problems of moderate- to
high-dimensions. In this paper we propose to simplify the approach of Zhang
and Liu (2010) and Martin, Zhang and Liu (2010) by taking an intermedi-
ate conditioning step in which the dimension of the a-variable is reduced to
make construction of a credible/efficient IM more manageable.

Throughout this development, a number of interesting open questions
emerge. First, is it possible to say that one decomposition (3.1) is somehow
“better” than another? The importance of this question from a practical
point of view is clear, but an answer would also shed light on the connection
between the proposed dimension reduction technique via conditioning and
classical sufficiency. Second, is it possible to consider more general types of
decompositions (3.1)? For example, can the component p2(X) = a2(ϕ2(U))
be replaced by something more general, such as c(X, ϕ2(U)) = 0? This
form of decomposition is required for difficult problem of inference on the
correlation in a bivariate normal model with known means and variances.
Our current notion of conditional credibility cannot handle this level of
generality, but an extension along these lines would make the conditioning
approach more applicable, and may also help in understanding the various
notions of “relevant subsets” in Section 3.5.

In the examples presented here, the conditional IM approach has a con-
siderable overlap with the classical notion of dimension reduction via suffi-
ciency, and we more-or-less recreate the classical solutions but in a different
context. This was done intentionally and we argue that the similarities do
not reflect poorly on the proposed approach. On the contrary, the fact that
by making convenient choices of a-equations and PRSs we can recreate clas-
sical solutions suggests that an “optimal” IM-based solution can do no worse
these solutions in a frequentist sense. Moreover, one should also keep in mind
that the IM-based output has a posterior probability-like interpretation, i.e.,
the posterior plausibility function measures the amount of evidence in the
observed data in favor of the assertion in question. Compare this to the in-
terpretation of a Neyman-Pearson test of significance: both procedures can
be designed to control the Type I error rates, but only the IM can simulta-
neously provide a post-data measure of uncertainty.

Efron (1998) states that Fisher’s fiducial argument (or something like it)
may be a big hit in the 21st century. There is definitely a difference between
IMs and fiducial, but the two are similar in spirit. It remains to be seen if
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this framework of IMs, beginning with Zhang and Liu (2010) and Martin,
Zhang and Liu (2010) and developed further in this series of papers, has
what it takes to fulfill Efron’s prediction.
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