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Abstract

The proportion of certain type of hypotheses is a key component of adaptive false
discovery procedures in multiple testing. To date, a good estimator of the propor-
tion of false null hypotheses under dependence is lacking. For multiple testing normal
means, we develop a (uniformly) consistent estimator of the proportion of nonzero nor-
mal means when the dependent test statistics follow a joint normal distribution with
a known covariance matrix representing certain types of strong dependence. Theoret-
ically and empirically, we demonstrate the better performance of our estimator than
existing ones.
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1 Introduction

Multiple testing has been widely conducted in differential gene expression studies (Efron,
2008), genome-wide association studies (Zhang and Liu, 2011), functional magnetic reso-
nance imaging (Pacifico et al., 2004), and classification of interstellar objects (Liang et al.,
2004). In typical multiple testing, there are m null hypotheses Hi with associated statistics
Ti, i = 1, ...,m. The true status of each Hi is denoted by si such that si = 0 means Hi is true
and that si = 1 means Hi is false, but it is unknown which among these m null hypotheses
are true. Let I∗0 = {1 ≤ i ≤ m : si = 0}, I∗1 = {1, ...,m} \I∗0 with ml = |I∗l | for l = 0, 1. The
proportion of true nulls is defined as π0 = m0/m1. A multiple testing procedure (MTP)
R based on Ti measurably maps each T = (T1, ..., Tm)′ to a unique ŝ = (ŝ1, ..., ŝm)′ ∈
S = {0, 1}m such that the inferred status of Hi is ŝi. The false discovery rate (FDR, Ben-
jamini and Hochberg, 1995) of R is defined as FDR (R) = E [V (R) /R (R)|R (R) > 0],
where

V (R) = |{i ∈ I∗0 : ŝi = 1}| and R (R) = |{1 ≤ i ≤ m : ŝi = 1}| . (1)

When R depends on a threshold t ∈ [0,∞) such that ŝi = 1{|Ti|≤t}, R in (1) is replaced by
t.

Due to its improved statistical power in multiple testing (Benjamini and Hochberg,
1995; Genovese and Wasserman, 2002) control of the FDR has become very popular in the
aforementioned fields, and MTPs that incorporate a conservative estimate π̂0 of π0, i.e.,

π0 ≤ max {π̂0, E [π̂0]} < 1, P -a.s. (2)
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when π0 < 1 and try to retain their FDRs under a prespecified level have been developed.
Such MTPs (e.g., RE01 in Efron et al., 2001; RGW04 in Genovese and Wasserman, 2004;
RBH06 in Benjamini et al., 2006; RBR09 in Blanchard and Roquain, 2009), commonly
termed “adaptive FDR procedures”, can be more powerful than their non-adaptive coun-
terparts, and they show the importance of accurately estimating π0 in the sense of (2).
Many popular estimators of π̂0’s or of π = 1− π0 (whose meaning is to be specified later)
have been proposed, and methods that derive them can be a roughly categorized into three
classes:

1. The “slope” method to estimate π0 (Storey et al., 2004; Benjamini et al., 2006; Blan-
chard and Roquain, 2009) whose origin can be traced back to the slope intuition in
Schweder and Spjøtvoll (1982). Highly dependent on the (global or) local uniformity
of the (empirical) density of the p-values, the method does not perform well un-
der (strong) dependence (Blanchard and Roquain, 2009; Friguet and Causeur, 2011;
Wang et al., 2011). The slope method yields the factor-slope hybrid (FSH) method in
Friguet and Causeur (2011), which employs the same model in Friguet and Kloareg
(2009) and uses π̂S0 in Storey et al. (2004) to estimate π0 based on the adjusted
p-values. π̂S0 is implemented by R library qvalue and the hybrid by R library FAMT.

2. Density estimation via mixture model to estimate π0, which divides into three branches:
(a) mode matching (Efron, 2008; Schwartzman, 2008). It is implemented by R pack-
age locfdr, robust to dependence but requires π0 ≥ 0.9; (b) nonparametric maxi-
mum likelihood estimator (NPMLE) in Langaas et al. (2005). It is implemented by
the function convest in the R library limma, relies on the shape constraints on the
marginal p-value density, and does not perform well under dependence; (c) Bayesian
method (Ghosal and Roy, 2011), which depends on a good prior for the unknown
parameters and is computationally demanding.

3. Fourier transform method (FTM) to estimate π (Jin and Cai, 2007; Jin, 2008), which
works only for independent or strongly mixing test statistics each of whose density
has the location-shift (and/or scale) property.

The above categories show that, consistency of estimation under strong dependence
and adaptivity to smaller values of π0 is not achieved by any of the existing estimators
of π0 (or π) simultaneously. Therefore, we aim to develop a better estimator of π that
possesses these two properties under certain strong dependence. In particular, we consider
the following setting. Suppose Z ∼ N (µ,Σ), i.e., Z is normally distributed with mean
vector µ = (µ1, ..., µm)′ and a known, deterministic correlation matrix Σ > 0 representing
certain types of strong dependency. We want to consistently estimate the proportion of
nonzero normal means

π = m−1 |{i : µi 6= 0}| (3)

based on an observed vector z of Z (where a true null is equivalent to µi = 0).
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Our strategy to develop the consistent estimator of π has three steps. First, we utilize
the principal factor approximation (PFA) developed in Fan et al. (2012) to decompose the
jointly normally distributed random vector of test statistics into two independent random
vectors, such that the major vector contributes the major part of the covariance depen-
dence between the components of the original random vector and the minor vector consists
of weakly dependent random variables. We then develop partial theory for non-concave
partially penalized least squares estimate and apply the theory to consistently estimate the
major vector. Finally, we extend a key bound needed for the Fourier transform method
(FTM) to estimate π in Jin (2008) to the case of heterogeneous null distributions, and apply
the extended Fourier transform method to the components of the mean-shifted, estimated
minor vector to estimate π consistently.

2 Revisiting Principal Factor Approximation

We take the convention that each vector is a column vector, unless it is transposed. For a
matrix C = (c1, ..., cm) and subset A ⊆ {1, ...,m}, we set CA = (ci, i ∈ A) for which the
order of the column indices of CA is the same as that of the elements in A, and CA =
((C′)A)′; in particular, we set C(k) = (c1, ..., ck) and C(−k) = (ck+1, ..., cm) for 1 ≤ k < m.
When C is a column vector, this convection applies row-wise. We restate the PFA in Fan
et al. (2012) as follows. Let w = (w1, ..., wm)′ ∼ Nm (0, I). The spectral decomposition of
Σ with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λm > 0 and corresponding eigenvectors γi, i = 1, ...,m
implies Zi = µi + ηi + vi, where

ηi =
∑k

j=1

√
λjγijwj ; vi =

∑m

j=k+1

√
λjγijwj .

Set T = (γ1, · · · ,γm) = (γij)m×m, D = diag {λ1, λ2, ..., λm}, G = T
√

D, η = (η1, ..., ηm)′ =

G(k)w(k) and v = (v1, ..., vm)′ = G(−k)w(−k). Then we have

Z = µ+ η + v. (4)

Components of w(k) are called the “principal factors” in Fan et al. (2012). We call η and
v the “major” and “minor” vectors, respectively. In order to make the model (4) more
flexible, we let

µ = Xβ

with X an m× p matrix and β ∈ Rp a sparse vector such that ‖β‖0 = q0 > 0.
The decomposition (4) induces three appealing properties for asymptotic analysis later:

1. η is independent of v.

4



2. There always exists a pair δ > 0 and 0 ≤ k ≤ m such that

m−1
√
λ2
k+1 + ...+ λ2

m = O
(
m−δ

)
. (5)

3. Whenever (5) holds,

m−2
∑

1≤i,j≤m

∣∣covvij∣∣ ≤ m−1 ‖A‖F = m−1
√
λ2
k+1 + ...+ λ2

m = O
(
m−δ

)
,

where A = cov (v,v) =
(
covvij

)
m×m

and ‖·‖F denotes the Froebinius norm of a

matrix.

3 Non-concave Partially Penalized Least Squares

We introduce some conventions and notations. Let w̃ = (w̃1, ..., w̃k)
′, β̃ =

(
β̃1, ..., β̃p

)′
and

take the convention that a scalar function applied to a vector results in a vector whose ith
component is the function evaluated at the ith component of the vector. Further, we write
(v′∗,v

′
∗∗)
′ as (v∗,v∗∗) for two column vectors v∗ and v∗∗.

The accuracy of an estimator of π depends on that of w(k) when PFA is used. The
L1-regression used in Fan et al. (2012) to estimate ŵ(k) assumes π ≈ 0 and omits all
nonzero µi’s in the optimization. To exploit the sparsity of µ and allow for relative large
π ∈ (0, 1/2) when estimating w(k), we consider the estimate, if it exists,(

β̂, ŵ(k)

)
∈ arg min

β̃∈Rp,w̃∈Rk
L
(
β̃, w̃;λ

)
, (6)

with

L
(
β̃, w̃;λ

)
=
∥∥∥Z−Xβ̃ −G(k)w̃

∥∥∥2
+ Λ

∥∥∥pλ (β̃)∥∥∥
1

, (7)

where Λ > 0 is a scale parameter, and pλ (·) = λρ (·) is the penalty function with ρ (·) =
ρ (·;λ). Specifically, we assume that ρ satisfies Condition 1 in Fan and Lv (2011):

Condition 1: ρ (t) is increasing and concave in t ∈ [0,∞), and has a continuous derivative
ρ′ (t) with ρ′ (0+) ∈ (0,∞). If ρ (t) is dependent on λ, ρ′ (t;λ) is increasing in
λ ∈ (0,∞) and ρ′ (0+) is independent of λ.

In addition, we borrow from Lv and Fan (2009) the definition that for b = (b1, ..., bq0)′ ∈ Rq0
with ‖b‖0 = q0,

κ (ρ; b) = lim
ε→0

max
1≤j≤q0

sup
t1,t2∈(|bj |−ε,|bj |+ε),t1<t2

−ρ
′ (t2)− ρ′ (t1)

t2 − t1
.
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Since the error distributions in (4) are weakly dependent, and in (6) only ũ but
not w̃ is penalized, we call (7) “non-concave partially penalized least squares (NCP-
PLS)” with dependent errors, for which no statistical theory on estimates in this set-

ting seems to exist. Hereunder, we establish the existence of
(
β̂, ŵ(k)

)
in (6) and its

weak oracle property (in the sense of Lv and Fan, 2009). Let Î1 =
{
j : β̂j 6= 0

}
, Î0 ={

j : β̂j = 0
}

, I1 = {1 ≤ i ≤ p : βi 6= 0}, I0 = {1, ..., p} \I1 and β∗ = mini∈I1 |βi|. Define

ai =
(

1−
∑k

j=1 λjγ
2
ij

)−1/2
, a(1) = mini∈E1

∞,i≤m {ai} and a(m) = maxi∈E1
∞,i≤m {ai} when

E1
∞ 6= ∅, where

E1
∞ = {i ∈ N : ∩∞k=1 ∪∞m=1 ∩∞n=m {1 ≤ i ≤ n :∞ > ai > k}} .

Define N ×N ∗ with{
N =

{
ν ∈ Rq0 : ‖ν‖0 =

∥∥βI1∥∥0
,
∥∥ν − βI1∥∥∞ ≤ c1

}
,

N ∗ =
{
ς ∈ Rk :

∥∥ς −w(k)

∥∥
∞ ≤ c2

}
,

for some c1 = (1− c0)β∗ for c0 ∈ (0, 1), c2 > 0, and the event

E2 =

{
max

1≤i≤m
{|vi|} ≤ u

}
= {‖v‖∞ ≤ u} for u > 0.

We now state the existence and weak oracle property of the NCPPLS estimates in (6):

Theorem 1 Assume Conditions 2 to 6 in Section A.1 hold. Then, with probability at least

1−
(
a(1)u

)−1
exp

(
−2−1a2

(1)u
2
)

on E2, setting λ = λ yields some
(
β̂, ŵ(k)

)
∈ arg minβ̃∈Rp,w̃∈Rk L

(
β̃, w̃;λ

)
with

(
β̂I1 , ŵ(k)

)
∈

N ×N ∗ and β̂I0 = 0, whereby c2 = λ
−1/2
k (C7,kc1 + C8,ku).

We remark that Theorem 1 generalize Theorems 4 of Lv and Fan (2009) to NCPPLS
with weakly dependent errors.

4 Bound on Difference Between Phase Functions

Once we have (consistently) estimated w(k) as ŵ(k), the next step is to adapt the FTM
to estimate π in Jin (2008) to our model to estimate π. The superior performance of the
FTM to estimate π has been justified for statistical models with independent or strongly
mixing normal random errors with homogeneous null distributions. However, due to the
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heterogeneity and dependence between vi, i = 1, ...,m in model (4), we need to extend the
FTM to the case of heterogeneous null distributions.

Let φµ,σ (x) =
1√
2πσ

exp
(
−2−1σ−2 (x− µ)2

)
for σ > 0. Define

κσ (t, x) =

∫ 1

−1
ω (ζ) e(tζσ)2/2 cos (tζx) dζ, (8)

which extends that in Jin (2008), and

ψ (t;µ) =

∫
eitµζω (ζ) dζ (9)

for some ω (ζ) that is bounded and symmetric around 0. We have E [κσ (t,X)] = ψ (t;µ) =
ω̂ (tµ) when X ∼ N

(
µ, σ2

)
, where f̂ denotes the Fourier transform of a function f ∈ L1 (R).

Note that

E [κ1 (t,X)] = (κ1 (t, ·) ∗ φ0,1) (µ) = ψ (t;µ) = E [κσ (t,X)] = (κσ (t, ·) ∗ φ0,σ) (µ) ,

Lemma 7.1 in Jin (2006) holds for the pair in (8) and (9), where ∗ denotes convolution of
functions. Let v∗j = µj + vj and v∗ = (v∗1, ..., v

∗
m)′. Then v∗j ∼ N

(
µj , a

−2
i

)
. As done in Jin

(2008), we define the underlying phase function

ϕ (t) = ϕ (t;µ,m) =
1

m

∑m

j=1
[1− ψ (t;µj)] (10)

and empirical phase function

ϕm (t) = ϕm (t; v∗) =
1

m

∑m

j=1

[
1− κa−1

j

(
t; v∗j

)]
. (11)

The performance of the FTM method to estimate π hinges upon how accurately ϕm ap-
proximates ϕ, the oracle that usually knows the true value of π. Therefore we will derive
bounds on |ϕm (t)− ϕ (t)| under the settings of the model (4).

Define

Λm (Cm) =

{
(µ,σ) : max

1≤j≤m
{|µj |+ |σj |} ≤ Cm

}
with σ = (σ1, ..., σm)′ where Cm depends only on m, and

Θm (γ,Cm) =

{
(µ, πm) : max

i∈I∗1
|µi| ≤ Cm;µ∗ = min

i∈I∗1
|µi| ≥

ln lnm√
2 lnm

;πm ≥ mγ−1

}
,

with γ ∈ (0, 1) where π in (3) is now written as πm. We derive a bound on ϕm (t)− ϕ (t)
by fully exploiting the property of the minor vector.
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Theorem 2 Assume (5) and

lim sup
m→∞

∣∣ρvij∣∣ ≤ 1− ε0 for some ε0 ∈ (0, 1]. (12)

Then for any ε̃ > 0, with probability at least 1−Mε̃−2a−2
(1)m

−δ lnm,

sup
0≤t≤

√
2γ lnm

|ϕm (t)− ϕ (t)| ≤Mϑm (γ) ε̃, (13)

where

ϑm (γ)


≤ eM + o (1) if lim supm→∞ a

−2
(1) lnm = M ,

=
exp

(
2−1γa−2

(1) lnm
)

γa−2
(1) lnm

(1 + o (1)) if limm→∞ a
−2
(1) lnm =∞.

Theorem 2 bounds δm (ϕ) = sup0≤t≤
√

2γ lnm |ϕm (t)− ϕ (t)| when the random errors,
i.e., vj ’s, are heterogeneous and weakly dependent. Therefore, it generalizes the bound on
δm (ϕ) in Jin and Cai (2007) and Jin (2008), where the random errors have the same null
variances (since the null parameters need to be estimated there) and are strongly mixing.

5 Consistency of Plug-in Estimator

Set η̂ = G(k)ŵ(k). Since ŵ(k) is a consistent estimator of w(k), so is v̂∗ = (v̂∗1, ..., v̂
∗
m)

with v̂∗j = Zi − η̂i as that of v∗. By Lipschitz property of ϕm, ϕm (t; v̂∗) → ϕm (t; v∗)
in probability. When the speed of convergence of ŵ(k) to w(k) is compatible with that of
ϕm (t; v̂∗) to ϕ (t; v∗), the plug in estimator ϕm (t; v̂∗) in place of ϕ (t; v∗) to estimate πm
will be (uniformly) consistent.

Theorem 3 Suppose Condition 7 in Section A.1, the conditions of Theorem 1 and of
Theorem 2 hold. In addition, assume a(1) →∞ and u→ 0 such that a(1)u→∞ and that

lim sup
m→∞

a−2
(1) lnm = M and ε̃−2m−δ = o (1) .

Then, when ε̃→ 0 and √
2γ lnm (C8,kc1 + C9,ku) ε̃ = o (πm) ,

the plug-in procedure ϕm (t; v̂∗) with
(
β̂, ŵ(k)

)
∈ arg minβ̃∈Rp,w̃∈Rk L

(
β̃, w̃;λ

)
is consis-

tent. When further √
2γ lnm (C8,kc1 + C9,ku) ε̃ = o

(
m1−γ) ,

ϕm (t; v̂∗) is uniformly consistent on Θm (γ,Cm), i.e.,
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1. For eligible1 ω, limm→∞ supΘm(γ,Cm)

∣∣∣∣∣ϕm
(√

2γ lnm; v̂∗
)

πm
− 1

∣∣∣∣∣ = 0,

2. For good ω, limm→∞ supΘm(γ,Cm)

∣∣∣∣sup0<t≤
√

2γ lnm ϕm (t; v̂∗)

πm
− 1

∣∣∣∣ = 0.

6 Implementation of Plug-in Estimator

PFA is easily implemented by spectral decomposition and then choosing

kδ = min
{
k : m−1

√
λ2
k+1 + ...+ λ2

m ≤ m−δ
}

with a preset δ ∈ (0, 1), say, δ = 0.5. Then we implement the NCPPLS using the minimax
concave penalty (MCP) pλ (·) of Zhang (2010) such that

λ−1pλ (t) = ρ (t;λ) =

∫ t

0
(1− x/ (θλ))+ dx for t > 0,

where θ = 3.7 is the parameter for the degree of concavity and λ the tuning parameter. A
local optimum (

β̂, ŵ(k), λ̂
)
∈ arg min

β̃∈Rp,w̃∈Rk,λ≥0

L
(
β̃, w̃;λ

)
is found via alternating optimization (e.g., Bezdek and Hathaway, 2002) through the fol-
lowing steps:

1. Set j = 0 and initialize w̃
(j)
∗ = 0.

2. Use the R package sparsenet of Mazumder et al. (2011) to compute the solution path
of

β̂
(j)
λ ∈ arg min

β̃∈Rm
L
(
β̃, w̃

(j)
∗ ;λ

)
for λ ∈ Sλ = {λk∗ , ..., λ0}, a grid of descendingly ordered λ values automatically set

by sparsenet, where β̂
(j)
λ has been indexed by λ ∈ Sλ. Pick β̂

(j)
∗ for which(

β̂
(j)
∗ , λ

(j)
∗

)
= arg min

β̃∈Rp,λ∈Sλ
L
(
β̃, w̃

(j)
∗ ;λ

)
.

1From Jin (2008), a density function ω over (−1, 1) is eligible if it is continuous, symmetric (around
0), and bounded. It is good if additionally there exists some convex, super-additive function g# such that
ω (ζ) = g# (1− ζ) for all 0 < ξ < 1.
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3. Compute

w̃
(j+1)
∗ = D

−1/2
(k) T′(k)

(
z−Xβ̂

(j)
∗

)
where z is an observation from Z.

4. Set j to be j + 1. Repeat steps 2 and 3 until∥∥∥β̂(j+1)
∗ − β̂(j)

∗

∥∥∥
2
< τ∗

∥∥∥β̂(j)
∗

∥∥∥
∞

with τ∗ = 10−5.

Suppose a local minimizer
(
β̂, ŵ(k)

)
has been found, we compute

v̂∗ = z−G(k)ŵ(k).

To implement the extended FTM to estimate π, we have adapted the R codes of Jin (2008)
to accommodate (10) and (11) since a−1

j are not equal to each other. The adapted codes,
available from the authors, are then applied to components of v̂∗ to estimate π, where the
triangular density ω (x) = (1− |x|) 1{|x|≤1} is used.

7 Numerical Studies

7.1 Settings

Even though our theory has been developed for X not necessarily being the identity matrix,
we set X = I in our simulations, which means β = µ and π = πµ = πβ = # {j : βj 6= 0} /m.
For m = 2000, p = 1.5m, πµ = 0.2 and 0.4,

1. generate vector β ∈ Rp, where βj = 0 for 1 ≤ j ≤ p (1− πβ) and βj 6= 0 for
p (1− πβ) + 1 ≤ j ≤ p. For β∗ = 0.5 and 3, nonzero |βj |’s are generated from
the uniform distribution on [β∗, β∗ + 1]; for β∗ = 0.01, they are generated from the
uniform distribution on [β∗, β∗ + 0.03]. The signs of βj 6= 0 are generated from
p (1− πβ) independent Bernoulli random variables each taking values ±1 with equal
probability.

2. generate w = (w1, ..., wm)′ ∼ N (0, I) and set Z̃ =
(
Z̃1, ..., Z̃m

)
.

3. generate two covariance structures:

• equicorrelation: set Σ = 0.5I+0.511′ and generate Z̃ ∼ N (0,Σ); set Z = β+Z̃.

• two-component long-range dependence: set Z̃1 = w1, Z̃2 = (−w1 + w2) /
√

2, ...,
Z̃m−1 = (−w1 + wm−1) /

√
2 and Z̃m = (−w1 + wm) /

√
2; set Z = β + Z̃.

4. Repeat Steps 2. and 3. 100 times.
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7.2 Partial Simulation Results

To maintain concise presentation, we set ζ = (ζ1, ..., ζm)′ and ζ̂ =
(
ζ̂1, ..., ζ̂m

)
, where

ζj = µj + ηj , ζ̂j = µ̂j + η̂j = µ̂j +
(
G(k)ŵ(k)

)
j
. Note that when m = 2000, the theoretical

threshold for the minimal conditional mean ζ∗ = min {|ζj | : |ζj | > 0} is

κ∗ =
ln lnm√

2 lnm
≈ 0.52.

Denote the plug-in estimator ϕm (t; v̂∗) by π̃ and its variant ϕm (t; v̂+) obtained using the
method in Jin (2008) by π̃∗, where v̂+ = v̂∗ ◦ a with a = (a1, .., am)′ is the standardized
version of v̂∗. By the duality between π and π0 = 1 − π, we will transform an estimator
π̂0 of π0 into π̂ = 1− π̂0, and compare π̃ and π̃∗ with π̂BH = 1− π̂BH0 where

π̂BH0 =
m− [m/2] + 1

m
(
1− p([m/2])

)
in Benjamini et al. (2006), π̂L = 1 − π̂L0 with π̂L0 in Langaas et al. (2005), and π̂SLIM =
1− π̂SLIM0 with π̂SLIM0 in Wang et al. (2011). It should be noted that π̂SLIM was claimed
by its developers to be robust to dependence. We did not compare 1 − π̃ or 1 − π̃∗ (as
estimators of π0) with that in Friguet and Causeur (2011) since the latter needs multiple
observations for the response vector, or with those in Storey et al. (2004) and Efron (2010)
since they directly break down with error messages when applied to our simulations.

We will not discuss the performance of the NCPPLS estimator since our focus is on
estimators of π. Due to the usage of PFA, the conditional means ζj and the dependence
between components v̂j of the estimate v̂∗ = z −G(k)ŵ(k) are the essential factors that
effect the performance of π̃ and π̃∗. We remark that for the marginal means µj even though
µ∗ is relatively large, ζ∗ obtained from the conditional means ζj can be very small due to
the randomness of w(k) and G(k). Further, as inputs to the extended FTM to estimate

π, the minimum v̂∗min = min
{∣∣∣v̂∗j ∣∣∣ : v̂j 6= 0

}
can be much smaller than µ∗, which creates

additional difficulty in estimating π. Such differences are illustrated by Table 1 and Table 2.
We also remark that for our simulations the conditions of Theorem 3 are violated. For

β∗ = µ∗ = 3, π = 0.2 and |µj | ∼ U (3, 4) when µj 6= 0, Figure 1 and Figure 2 show
the performances of five competing estimators of π and that of the NCPPLS estimator
respectively for the equicorrelation and two-component long-range covariance dependence.
We choose to display the results for π = 0.2 to better illustrate the advantage of the new
estimator π̃, in that the smaller π is, the more the noise there is and the harder it is to
estimate π. As shown by these two figures, for both types of covariance dependence the new
estimators π̃ is the most accurate and most stable. Besides, it is almost always less than
π, which is necessary for an adaptive FDR procedure that uses π̃ to maintain conservative
control of the prespecified FDR level. In contrast, π̂SLIM , even though claimed to be robust
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to dependence, is very unstable and often larger than π; the quantile-based estimator π̂BH

is always larger than π and unstable; the NPMLE π̂L, depending on the shape of the
(empirical) distribution of p-values, is always very close to 1, i.e., erroneous.

Additional details on Figure 1 and Figure 2 for the case π = 0.4 are provided in
Table 1. We point out that, for the two types of covariance dependence considered, ζ∗∗,
the minimum of all ζ∗’s for the 100 replications across the two settings for π are far less
than the theoretically required minimal signal strength κ∗. Specifically, the maximum,
ζmax
∗∗ , of ζ∗∗ for these four settings (two covariance dependences and two values of π) is

0.04311, implying
ζmax
∗∗
κ∗

=
0.04311

0.52
= 0.08290.

Despite the existence of such weak signals (i.e., nonzero conditional means of small mag-
nitudes), the new estimator π̃ still maintains high accuracy as its sample mean is less than
π but is within 0.01 allowance from π, and high stability since it has the smallest sample
standard deviation (being no larger than 0.0045) among all the competing estimators of
π. It is interesting to note that the variant π̃∗ also has excellent performance since it is
almost as accurate as π̃ (but is less stable because of the amplification induced by stan-
dardization of v̂∗). These observations demonstrate the superior performance of the new
estimator π̃ and the slight improvement of π̃ in stability over the method in Jin (2008) for
heterogeneous nulls when the minimal signal strength is not too small. We remark that
this batch of simulations supplements Experiment (a) in Jin (2008) where in our notations
m = 105, µ∗ = 0.5, 0.75, 1, 1.25 and κ∗ = 0.5092. That is, in this experiment of Jin, µ∗ ≈
or > κ∗ holds, but in our simulations ζmax

∗∗ � min {0.52, 0.5092}. Our simulation results
add to the evidence that the (extended) FTM to estimate π is able to detect weak signals
(where we have called a nonzero (conditional) normal mean a “signal”).

For the above two types of strong covariance dependence, we conducted another batch
of simulations where |µj | ∼ U (0.5, 1.5) with and U (0.01, 0.04) when µj 6= 0 for πµ = 0.4
and 0.2. The results are reported in Table 2. In terms of accuracy, stability and being
no larger than the true proportion π, the variant π̃∗ is the winner when π = 0.2 while all
other competing estimators give erroneously estimates much larger or smaller than π, with
π̂SLIM being the second worst. When π = 0.4 and µ∗ = 0.5, π̂BH is the winner, π̂SLIM

the second best, and the variant π̂∗ the third, with π̂L being very close to 1; when π = 0.4
and µ∗ = 0.01, π̂BH is the winner, the variant π̃∗ the second best, while π̂SLIM and π̂L

are the worst. In all settings, π̃ and π̃∗ has the smallest sample standard deviations, and
is the most stable. The better performance of π̃∗ than π̃ in such cases is due to the fact
that π̃∗ uses v̂+, each component of which has larger magnitude than that of v̂∗.

The simulation results seem to suggest preferences to different estimators of π under
different sparsity settings. When the signal strength is large, i.e., µ∗ is large, the new esti-
mator π̃ is recommended, since in this case better performance of the NCPPLS estimator
can be expected and relatively larger signals are available for the extended FTM to estimate

12



π. On the other hand, when the signal is very sparse, the variant π̃∗ of the new estimator
π̃ is recommended, since π̃∗ uses amplified signals and the extended FTM method is able
to detect the existence of fairly weak signals. Finally, when the signal strength is small
but the number of signals is relatively large, π̂BH is recommended and preferred to π̂SLIM ,
since in this case in an overall fashion more information on the distribution of nonzero
normal means is available to the quantile-based estimator π̂BH even though every bit of
the available information is weak.
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Figure 1: Equicorrelation with πµ = 0.2. (a) Boxplots of five estimators of πµ: 1 for
π̃∗ = π̂1; 2 for π̃ = π̂2; 3 for π̂SLIM = π̂3; 4 for π̂BH = π̂4; 5 for π̂L = π̂5. (b) (truncated)
difference between each estimator and the truth: ◦ for π̂1 − πµ; � for π̂2 − πµ; 4 for
π̂3− πµ; + for π̂4− πµ; ∗ for π̂5− πµ. An undisplayed symbol indicates the corresponding
difference is out of the specified range for the differences. (c) Boxplots of false and true
selections: 1 for the number of incorrectly selected βj ’s, (i.e., false selection); 2 for that
of correctly selected nonzero βj ’s, (i.e., true selections). (d) Boxplots of infinity norms of

penalized estimates: 1 for
∥∥∥β − β̂∥∥∥

∞
; 2 for

∥∥w(k) − ŵ(k)

∥∥
∞; 3 for

∥∥∥ζ − ζ̂∥∥∥
∞

.
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Figure 2: Two-component long-range dependence with πµ = 0.2. (a) Boxplots of five
estimators of πµ: 1 for π̃∗ = π̂1; 2 for π̃ = π̂2; 3 for π̂SLIM = π̂3; 4 for π̂BH = π̂4; 5 for
π̂L = π̂5. (b) (truncated) difference between each estimator and the truth: ◦ for π̂1 − πµ;
� for π̂2−πµ; 4 for π̂3−πµ; + for π̂4−πµ; ∗ for π̂5−πµ. An undisplayed symbol indicates
the corresponding difference is out of the specified range for the differences. (c) Boxplots of
false and true selections: 1 for the number of incorrectly selected βj ’s, (i.e., false selection);
2 for that of correctly selected nonzero βj ’s, (i.e., true selections). (d) Boxplots of infinity

norms of penalized estimates: 1 for
∥∥∥β − β̂∥∥∥

∞
; 2 for

∥∥w(k) − ŵ(k)

∥∥
∞; 3 for

∥∥∥ζ − ζ̂∥∥∥
∞

.

8 Conclusion and Discussion

To induce better adaptive FDR procedures for multiple testing normal means under covari-
ance dependence, we have developed a (uniformly) consistent estimator of the proportion
of nonzero normal means when the strongly dependent test statistics follow a joint normal
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Two-comp Long-range Equal Correlation

πµ 0.4 0.2 0.4 0.2

µ∗ 3 3 3 3

ζ∗,med 0.54499 0.50795 0.54499 0.50795

ζ∗∗ 0.00509 0.04311 0.00509 0.04311

a(m) 44.76606 44.76606 1.41457 1.41457

κ∗ 0.52021 0.52021 0.52021 0.52021

v̂∗min ∗ × 103 0.00847 0.00577 0.00918 0.00922

v̂∗max ∗ 9.75182 9.54028 9.26243 9.47015

π̂1
0.39772 0.19866 0.39929 0.19790
(0.02419) (0.02482) (0.02347) (0.02908)

π̂2
0.39631 0.19864 0.39614 0.19824
(0.00403) (0.00424) (0.00407) (0.00450)

π̂3
0.41388 0.25245 0.41597 0.25420
(0.04638) (0.09478) (0.04643) (0.09480)

π̂4
0.43688 0.38007 0.43728 0.38065
(0.02737) (0.05338) (0.02713) (0.05290)

π̂5
0.98853 0.99303 0.98854 0.99303
(0.00113) (0.00164) (0.00111) (0.00162)

FSP
0.99935 0.99936 0.99938 0.99928
(0.00073) (0.00062) (0.00077) (0.00059)

TSP
1 1 1 1
(0) (0) (0) (0)∥∥∥β − β̂∥∥∥

∞

2.54087 2.55756 2.54298 2.56988
(0.22432) (0.20322) (0.17811) (0.23434)∥∥w(k) − ŵ(k)

∥∥
∞

0.03566 0.03601 0.03553 0.03671
(0.02403) (0.02713) (0.02542) (0.02654)∥∥∥ζ − ζ̂∥∥∥

∞
2.53536 2.54690 2.54243 2.56347

(0.22542) (0.20398) (0.17894) (0.23175)

Table 1: Estimators of π with µ∗ = 3: µ∗ is the minimal marginal mean. ζ∗,med is the
median of all ζ∗’s for all 100 replications; ζ∗∗, v̂

∗
min ∗ and v̂∗max ∗ are respectively the minimum

of ζ∗’s, the minimum of v̂∗min’s and the maximum of v̂∗max’s for the 100 replications. From
the 10th row on, in each cell the top and bottom numbers are respectively the sample mean
and sample standard deviation of the corresponding estimator in the 1st column. FSP
denotes the false selection proportion and TSP the true selection proportion.
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distribution with a known but non-arbitrary covariance matrix. As by-products of devel-
oping this estimator, we have established the existence and weak oracle property of the
solution of non-concave partially penalized least squares with weakly dependent normal
random errors, and extended the Fourier transform method to estimate this proportion
in Jin (2008) to the case of weakly dependent, heterogeneous null distributions. It is by
far the only consistent estimator of the proportion of nonzero normal means under certain
strong covariance dependencies, and it can be plugged into the latest FDR procedures un-
der dependence (e.g., Fan et al., 2012) to make them adaptive to lower levels of sparsity of
the normal means.

The regularity Condition 4 in Section A.1 to establish Theorem 1 is closely related to
the irrepresentable condition of Zhao and Yu (2006) when w(k) = 0 in model (4), and it
can be violated in practice. Besides Condition 4, another restriction on the applicability
of the consistent estimator is the assumption of a known covariance matrix for the jointly
normally distributed test statistics since usually such a covariance matrix needs to be
estimated. Unfortunately, existing theory can only accurately estimate a few types of large-
scale variance-covariance matrices, while in practice the complex dependence structure
between the test statistics may render such theory inapplicable.

Despite the implausibility of the assumptions made in Theorem 3, our strategy to
develop the new consistent estimator depends only on the dependency between the com-
ponents of the mean-shifted estimated minor vector and on the minimal magnitude of the
nonzero conditional normal means. This implies that, even when certain assumptions of
Theorem 3 do not hold, the proportion of nonzero normal means π can still be consistently
estimated as long as

1. the major dependency among the components of the test statistics Z can be extracted,
resulting in weak dependency between the components of the mean-shifted estimated
minor vector v̂∗,

2. the estimated conditional mean vector ζ̂ retains the same proportion of nonzero
components as that of the marginal mean vector µ,

3. ζ∗ is no less than the theoretical minimal signal strength κ∗.

The above intuition is supported by our empirical finding that the new estimator per-
forms well in our simulation studies where some conditions of Theorem 3 are not fully
satisfied. We will leave the development of a consistent estimator of the proportion of
nonzero normal means under strong covariance dependence without using the consistent
estimators of the principal factors to future research.
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A Technical Proofs

A.1 Regularity Conditions

Condition 2: X and G(k) satisfy X′I1

(
I−T(k)T

′
(k)

)
XI1 > 0 and lim infm→∞ λk > 0.

Condition 3: X and G(k) satisfy∥∥∥∥[X′I1 (I−T(k)T
′
(k)

)
XI1

]−1
∥∥∥∥
∞
< C3,k,

∥∥∥X′I1 (I−T(k)T
′
(k)

)∥∥∥
∞
< C4,k,

∥∥∥X′I0T(k)T
′
(k)XI1

∥∥∥
∞
≤ C5,k ,

∥∥∥X′I0 (I−T(k)T
′
(k)

)∥∥∥
∞
≤ C6,k,∥∥∥T′(k)XI1

∥∥∥
∞
≤ C7,k ,

∥∥∥T′(k)

∥∥∥
∞
≤ C8,k.

Condition 4: ρ, X and G(k) satisfy
ρ′ (c0β∗)

ρ′ (0+)
<

1

C3,kC5,k
.

Condition 5: u, ρ, X and G(k) satisfy

u < max

{
C∗k
(
ρ,X,G(k)

)
, C+

k

(
ρ,X,G(k)

)
,

c1

C3,kC4,k

}
,

where

C∗k
(
ρ,X,G(k)

)
= c1

(
1

ρ′ (c0β∗)C3,k
−

C5,k

ρ′ (0+)

)(
C6,k

ρ′ (0+)
+

C4,k

ρ′ (c0β∗)

)−1

and
C+
k

(
ρ,X,G(k)

)
= C−1

6,k

(
κ−1

0 ρ′ (0+)λmin

(
X′I1XI1

)
− C5,kc1

)
with κ0 = sup {κ (ρ; ν) : ν ∈ N}.

Condition 6: λ satisfies λ ≤ λ ≤ λ̄, where

λ =
C5,kc1 + C6,ku

2−1Λρ′ (0+)
and λ̄ =

1

2−1Λρ′ (c0β∗)

(
c1

C3,k
− C4,ku

)
.
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Condition 7:
∥∥∥T(k)T

′
(k)XI1

∥∥∥
∞
≤ C8,k and

∥∥∥T(k)T
′
(k)

∥∥∥
∞
≤ C9,k.

It should be noted the similarity between the condition∥∥∥∥X′I0T(k)T
′
(k)XI1

[
X′I1

(
I−T(k)T

′
(k)

)
XI1

]−1
∥∥∥∥
∞
≤ C3,kC5,6 <

ρ′ (0+)

ρ′ (c0β∗)

and the irrepresentable condition of Zhao and Yu (2006) when w(k) = 0 in model (4).

A.2 Proof of Weak Oracle Property of Estimators (Theorem 1)

Write the objective function in (6) as

L = L
(
β̃, w̃(k);λ

)
=
∑m

j=1

(
Zj − x̃jβ̃ −

∑k

l=1

√
λlγj,lw̃l

)2

+ Λλ
∑m

j=1
ρ
(∣∣∣β̃j∣∣∣)

where x̃j is the jth row of X = (xij). Then the partial derivatives are
∂L

∂w̃l
= −2

∑m
j=1

(
Ỹj − x̃jβ̃

)√
λlγjl for l = 1, .., k,

∂L

∂β̃j
= −2

∑m
i=1

(
Ỹi − x̃iβ̃

)
xij + Λλ sgn

(
β̃j

)
ρ′
(∣∣∣β̃j∣∣∣) for β̃j 6= 0,

where Ỹj = Zj −
∑k

l=1

√
λlγj,lw̃l. Let G(k) = T(k)

√
D(k). Set

∂L
(
µ̃, w̃(k);λ

)
∂β̃

= −2X′
(
Z−Xβ̃ −G(k)w̃(k)

)
+ Λλτ ,

∂L
(
µ̃, w̃(k);λ

)
∂w̃(k)

= −2G′(k)

(
Z−Xβ̃ −G(k)w̃(k)

)
,

where τ = (τ1, ..., τm)′ with τj = τ
(
β̃j

)
, and τ (x) = sgn (x) ρ′ (|x|) for x 6= 0 and τ (x) ∈

[−ρ′ (0+) , ρ′ (0+)] when x = 0.

Necessary conditions. When
(
β̂, ŵ(k)

)
∈ arg minβ̃∈Rp,w̃(k)∈Rk

L
(
β̃, w̃(k);λ

)
, then

necessarily
∂L

∂ŵl
= 0 for 1 ≤ l ≤ k,

∂L

∂β̂j
= −2

m∑
i=1

(
Ŷi − x̃iβ̂

)
xij + Λλ sgn

(
β̂j

)
ρ′
(∣∣∣β̂j∣∣∣) = 0
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for j ∈ Î1, and

−λΛ

2
ρ′ (0+) ≤

m∑
i=1

(
Ỹi − (x̃i)Î1 β̂Î1

)
xij ≤

λΛ

2
ρ′ (0+) for j ∈ Î0,

where Î0 =
{
i : β̂j = 0

}
and Î1 =

{
i : β̂j 6= 0

}
. In compact form, these conditions are:

2G′(k)

(
Xβ̂ −G(k)ŵ(k) − Z

)
= 0, (14)

(
X′
)Î1 (Z−G(k)ŵ(k) −XÎ1

β̂Î1

)
=
λΛ

2
sgn

(
β̂Î1

)
◦ ρ′

(
β̂Î1

)
, (15)

and

− λΛ

2
ρ′ (0+) ≤

(
X′
)Î0 (Z−G(k)ŵ(k) −XÎ1

β̂Î1

)
≤ λΛ

2
ρ′ (0+) . (16)

Let
∣∣∣Î1

∣∣∣ = q and R̃q =
{
β̃ ∈ Rp : β̃Î0 = 0

}
. By definition of

(
β̂, ŵ(k)

)
, there exists

a ball B in R̃q ⊗ Rk of small radius centered at
(
β̂, ŵ(k)

)
such that L

(
β̃, w̃(k);λ

)
≥

L
(
β̂, ŵ(k);λ

)
for any

(
β̃, w̃(k)

)
∈ B, where ⊗ denotes the Cartesian product with relative

topology inherited from Rq ⊗ Rk. Further, 2λmin

(
X′
Î1

XÎ1

)
≥ λΛκ

(
ρ; β̂Î1

)
, where λmin

denotes the smallest eigenvalue of a matrix.
Form of solution. (14) is equivalent to G′(k)Xβ̂ + D(k)ŵ(k) = G′(k)Z, and further to

T′(k)XÎ1
β̂Î1+D

1/2
(k) ŵ(k) = T′(k)Xβ̂ + D

1/2
(k) ŵ(k) = T′(k)Z

when β̂Î0 = 0, i.e.,

ŵ(k) = D
−1/2
(k) T′(k)

(
Z−Xβ̂

)
. (17)

Plugging (17) into the RHS of (15) gives

Z−G(k)ŵ(k) −XÎ1
β̂Î1

= Z−T(k)T
′
(k)

(
Z−XÎ1

β̂Î1

)
−XÎ1

β̂Î1 =
(
I−T(k)T

′
(k)

)(
Z−XÎ1

β̂Î1

)
.

Therefore, (15) becomes

(
X′
)Î1 (I−T(k)T

′
(k)

)(
Z−XÎ1

β̂Î1

)
=
λΛ

2
τ
(
β̂Î1

)
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and (16) changes into

2 (λΛ)−1

∥∥∥∥(X′)Î0 (I−T(k)T
′
(k)

)(
Z−XÎ1

β̂Î1

)∥∥∥∥
∞
≤ ρ′ (0+) .

Setting

τ̂ = 2 (λΛ)−1 X′
(
I−T(k)T

′
(k)

)(
Z−XÎ1

β̂Î1

)
.

Then τ̂Î1 is equivalent to (15) and
∥∥∥τÎ0∥∥∥∞ ≤ ρ′ (0+) is just (16). We can also write

β̂Î1 = Q−
Î1

[(
X′
)Î1 (I−T(k)T

′
(k)

)
Z− λΛ

2
τ
(
β̂Î1

)]
,

where
QÎ1

= X′
Î1

(
I−T(k)T

′
(k)

)
XÎ1

and − for a matrix denotes its Moore-Penrose inverse.
Existence of a solution with weak oracle property. We want to find a local

minimizer of L such that
∥∥∥β̂I1 − βI1∥∥∥∞ ≤ c1 and

∥∥ŵ(k) −w(k)

∥∥
∞ ≤ c2. For the moment,

let us assume I1 = Î1. Then from (17), (15), we would have,

β̂I1 =
(
X′I1XI1

)−1
[
X′I1

(
Z−G(k)ŵ(k)

)
− 2−1λΛτ

(
β̂I1

)]
=

(
X′I1XI1

)−1
X′I1XI1βI1 +

(
X′I1XI1

)−1
X′I1T(k)T

′
(k)XI1

(
β̂I1 − βI1

)
+
(
X′I1XI1

)−1
[
X′I1

(
I−T(k)T

′
(k)

)
v − 2−1λΛτ

(
β̂I1

)]
,

using

Z−G(k)ŵ(k)

= XI1βI1 + G(k)w(k) + v −T(k)T
′
(k)

(
Z−XI1β̂I1

)
= XI1βI1 + G(k)w(k) + v −T(k)T

′
(k)XI1

(
βI1 − β̂I1

)
−G(k)w(k) −T(k)T

′
(k)v

= XI1βI1 + T(k)T
′
(k)XI1

(
β̂I1 − βI1

)
+
(
I−T(k)T

′
(k)

)
v

and

T(k)T
′
(k)

(
Z−XI1β̂I1

)
= T(k)T

′
(k)

(
XI1βI1 + G(k)w(k) + v −XI1β̂I1

)
= T(k)T

′
(k)XI1

(
βI1 − β̂I1

)
+ G(k)w(k) + T(k)T

′
(k)v.
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Let

P = I−
(
X′I1XI1

)−1
X′I1T(k)T

′
(k)XI1 =

(
X′I1XI1

)−1
X′I1

(
I−T(k)T

′
(k)

)
XI1

and
Υ
(
β̂I1 ,v

)
= X′I1

(
I−T(k)T

′
(k)

)
v − 2−1λΛτ

(
β̂I1

)
Then

P
(
β̂Î1 − βI1

)
=
(
X′I1XI1

)−1
Υ
(
β̂I1 ,v

)
.

Further, from (17) and (16), we would have (X′)I0
(
Z−G(k)ŵ(k) −XI1β̂I1

)
= X′I0Υ1

(
β̂I1 ,v

)
and

−λΛ

2
ρ′ (0+) ≤ X′I0Υ1

(
β̂I1 ,v

)
≤ λΛ

2
ρ′ (0+) ,

where
Υ1

(
β̂I1 ,v

)
= T(k)T

′
(k)XI1

(
β̂I1 − βI1

)
+
(
I−T(k)T

′
(k)

)
v.

The previous arguments essentially suggest that we only need to show that there is a
solution (ν̂, ς̂) ∈ N ×N ∗ such that the following

P
(
ν̂ − βI1

)
=
(
X′I1XI1

)−1
Υ (ν̂,v) (18)

− λΛ

2
ρ′ (0+) ≤ X′I0Υ1 (ν̂,v) ≤ λΛ

2
ρ′ (0+) (19)

ς̂ = D
−1/2
(k) T′(k) (Z−XI1 ν̂) (20)

2λmin

(
X′I1XI1

)
≥ Λλκ (ρ; ν̂) (21)

hold simultaneously.
Define

Ξ∗ (ν) =
(
βI1 − ν

)
+ δβ,I1

with component functions Ψi (ν), i = 1, .., q and ν = (ν1, ..., νq0)′, where

δµ,I1 = P−1
(
X′I1XI1

)−1
Υ (ν̂,v) =

[
X′I1

(
I−T(k)T

′
(k)

)
XI1

]−1
Υ (ν̂,v) .

when M = X′I1

(
I−T(k)T

′
(k)

)
XI1 > 0. By Miranda existence theorem (e.g., Vrahatis,

1989), Ξ∗ has a zero in N when Ξ∗ (e) 6= 0 for e = (e1, ..., eq0)′ ∈ ∂N and that{
Ψi (e1, ..., ei−1, ei, ei+1, ..., eq0) ≤ 0 for 1 ≤ i ≤ q0

Ψi (e1, ..., ei−1, ẽi, ei+1, ..., eq0) ≥ 0 for 1 ≤ i ≤ q0
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for ei such that ei − βI1,i = −c1 and ẽi − βI1,i = c1 when i = 1, ..., q0, respectively.
First, we claim that Ξ∗ has a zero in N on the event

E2 =

{
max

1≤i≤m
{|vi|} ≤ u

}
= {‖v‖∞ ≤ u}

when m is large enough. Clearly,

P (E2) ≤
m∑
i=1

P ({ai |vi| > aiu}) ≤
m∑
i=1

P
({
ai |vi| > a(1)u

})
≤
m exp

(
−2−1a2

(1)u
2
)

a(1)u

and P (Ω\E2) = 1 + o (1) when
(
a(1)u

)−1
m exp

(
−2−1a2

(1)u
2
)
→ 0 as m → ∞. Let

β∗ = minj∈I1 |βj | and βI1 =
(
βj1 , ..., βjq0

)′
for jl ∈ I1. When c1 = (1− c0)β∗ for c0 ∈ (0, 1)

and ν =
(
νj1 , ..., νjq0

)′ ∈ N ,∥∥ν − βI1∥∥∞ = max
jl∈I1

{|νjl − βjl |} ≥ max
1≤l≤q0

{||νjl | − |βjl ||} ,

and |νjl | ≥ −c1 + |βjl | ≥ −c1 + β∗ = c0β∗ . So ‖sgn (ν) ◦ ρ′ (ν)‖∞ ≤ ρ′ (c0β∗). When

‖M‖∞ < C3,k and
∥∥∥X′I1 (I−T(k)T

′
(k)

)∥∥∥
∞
< C4,k,

it follows that

‖δβ,I1‖∞ = ‖M‖∞
[∥∥∥X′I1 (I−T(k)T

′
(k)

)∥∥∥
∞
‖v‖∞ + 2−1λΛρ′ (c0β∗)

]
≤ C3,k

(
C4,ku+

λΛ

2
ρ′ (c0β∗)

)
.

Let ei = (e1, ..., ei−1, ei, ei+1, ..., eq0)′ and ẽi = (e1, ..., ei−1, ẽi, ei+1, ..., eq0)′. When u <
c1

C3,kC4,k
and

λ ≤ λ̄ =
1

2−1Λρ′ (c0µ∗)

(
c1

C3,k
− C4,ku

)
,

we have ‖δβ,I1‖∞ < c1 = (1− c0)µ∗ and{
Ψi (ei) ≤ c1 − ‖δβ,I1‖∞ < 0,
Ψi (ẽi) ≥ −c1 + ‖δβ,I1‖∞ > 0

(22)

for 1 ≤ i ≤ q0. Hence, Ξ∗ has a zero in N .
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Secondly, we verify that ν̂ satisfies (19). When∥∥∥X′I0T(k)T
′
(k)XI1

∥∥∥
∞
≤ C5,k and

∥∥∥X′I0 (I−T(k)T
′
(k)

)∥∥∥
∞
≤ C6,k,

it holds that ∥∥X′I0Υ1 (ν̂,v)
∥∥
∞

≤
∥∥∥X′I0T(k)T

′
(k)XI1

∥∥∥
∞
c1 +

∥∥∥X′I0 (I−T(k)T
′
(k)

)∥∥∥
∞
‖v‖∞

≤ C5,kc1 + C6,ku.

When

λ ≥ λ =
C5,kc1 + C6,ku

2−1Λρ′ (0+)
,

‖δβ,I0‖∞ ≤
λΛ

2
ρ′ (0+) and (19) holds. Therefore, λ ∈

[
λ, λ̄

]
can be chosen. When

ρ′ (c0β∗)

ρ′ (0+)
<

1

C3,kC5,k

and u < C∗k
(
ρ,X,G(k)

)
where

C∗k
(
ρ,X,G(k)

)
= c1

(
1

ρ′ (c0β∗)C3,k
−

C5,k

ρ′ (0+)

)(
C6,k

ρ′ (0+)
+

C4,k

ρ′ (c0β∗)

)−1

,

the interval
[
λ, λ̄

]
is non-empty with λ ≥ 0. Hence λ = λ is well defined.

Thirdly, we verify (21) when λ = λ is set. Since

u < C+
k

(
ρ,X,G(k)

)
:= C−1

6,k

(
ρ′ (0+)λmin

(
X′I1XI1

)
κ0

− C5,kc1

)

and κ0 = sup {κ (ρ;ν) : ν ∈ N}, it follows that

λ ≤
2λmin

(
X′I1XI1

)
Λκ0

≤
2λmin

(
X′I1XI1

)
Λκ (ρ; ν̂)

,

i.e., (21) holds.
Finally, we bound the difference between ς̂ and w(k). From (20), we see

ς̂ −w(k) = D
−1/2
(k) T′(k) (Z−XI1 ν̂)−w(k)

= D
−1/2
(k) T′(k)XI1

(
βI1 − ν̂

)
+ D

−1/2
(k) T′(k)v.
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Therefore ∥∥ς̂ −w(k)

∥∥
∞ ≤

∥∥∥D−1/2
(k) T′(k)XI1

(
βI1 − ν̂

)∥∥∥
∞

+
∥∥∥D−1/2

(k) T′(k)v
∥∥∥
∞

≤ λ
−1/2
k C7,kc1 + λ

−1/2
k

∥∥∥T′(k)

∥∥∥
∞
‖v‖∞

≤ λ
−1/2
k (C7,kc1 + C8,ku) = c2

since ∥∥∥T′(k)XI1

∥∥∥
∞
≤ C7,k and

∥∥∥T′(k)

∥∥∥
∞
≤ C8,k.

This completes this proof.

A.3 Proof of Bound on |ϕm (t)− ϕ (t)| (Theorem 2)

We directly bound

m−1

∣∣∣∣∣∣
m∑
j=1

(
cos
(
tζv∗j

)
− E

[
cos
(
tζv∗j

)])∣∣∣∣∣∣
using Markov inequality. Let s̃m (t) = m−1

∑m
j=1 cos

(
tζv∗j

)
and s̃ (t) = E [s̃m (t)]. The

trick is to transform var (s̃m (t)− s̃ (t)) into a sum of quadratic functions of
∣∣∣ρvij∣∣∣, and use

(5), (12) to bound var (s̃m (t)− s̃ (t)). When

P ({|s̃m (t)− s̃ (t)| > ε̃}) ≤ var (s̃m (t)− s̃ (t))

ε̃2

and var (s̃m (t)− s̃ (t)) dominates ε̃2 with certain order as they converge to zero, the as-
sertion will be justified.

Given ε̃ > 0,

var (s̃m (t)− s̃ (t))

= m−2
m∑
i=1

var
(
cos
(
tζv∗j

))
+ 2m−2

∑
1≤i<j≤m

cov
(
cos (tζv∗i ) , cos

(
tζv∗j

))
.

From
cos (tζv∗i ) = cos (tζµi)− tζ sin (ζṽ∗i ) (v∗i − µi)
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where ṽ∗i is strictly between µi and v∗i , we get

cov
(
cos (tζv∗i ) , cos

(
tζv∗j

))
= cov

(
cos (tζµi)− tζ sin (ζṽ∗i ) (v∗i − µi) , cos (tζµj)− tζ sin

(
ζṽ∗j
) (
v∗j − µj

))
= t2ζ2cov

(
sin (ζṽ∗i ) (v∗i − µi) , sin

(
ζṽ∗j
) (
v∗j − µj

))
≤ t2ζ2cov

(
|v∗i − µi| ,

∣∣v∗j − µj∣∣) .

By Wellner and Smythe (2002), E
[
a−1
i |v∗i − µi| a

−1
j

∣∣∣v∗j − µj∣∣∣] =
2

π
κ̃
(
ρvij

)
where

κ̃
(
ρvij
)

= ρvij arcsin ρvij +

√
1−

(
ρvij

)2

and E [|v∗i − µi|] = a−1
i

√
2

π
. Noticing additionally that

∣∣∣∣∣
√

1−
(
ρvij

)2
− 1

∣∣∣∣∣ = 2−1
(
ρvij
)2 (

1− θ̃
)−1/2

for some 0 < θ̃ <
(
ρvij

)2
and ρvij ≤ 1− ε0 for all i, j ∈ SCε0 , we have

∣∣κ̃ (ρvij)− 1
∣∣ ≤ π

2

∣∣ρvij∣∣+

(
ρvij

)2

2
√
ε0 (2− ε0)

and ∣∣cov (cos (tζv∗i ) , cos
(
tζv∗j

))∣∣ ≤ t2ζ2cov
(
|v∗i − µi| ,

∣∣v∗j − µj∣∣)
= t2ζ2

(
E
[
|v∗i − µi|

∣∣v∗j − µj∣∣]− E [|v∗i − µi|]E
[∣∣v∗j − µj∣∣])

=
2

π
t2ζ2a−1

j a−1
i

∣∣κ̃ (ρvij)− 1
∣∣ ≤Mt2a−2

(1)

(∣∣ρvij∣∣+
∣∣ρvij∣∣2) .

Therefore

2m−2
∑

1≤i<j≤m
cov

(
cos (tζv∗i ) , cos

(
tζv∗j

))
≤ 2M

m (m− 1)

m2
t2ζ2a−2

(1)

∑
1≤i<j≤m

(∣∣ρvij∣∣+
∣∣ρvij∣∣2) ≤Mt2a−2

(1)m
−δ.
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This, in addition with

m−2
m∑
i=1

var
(
cos
(
tζv∗j

))
≤Mm−1t2a−2

(1),

implies

P ({|s̃m (t)− s̃ (t)| > ε̃}) ≤
Mt2a−2

(1)m
−δ

ε̃2
+
Mm−1t2a−2

(1)

ε̃2

and

sup
0≤t≤

√
2γ lnm

P ({|s̃m (t)− s̃ (t)| > ε̃}) ≤
Ma−2

(1)m
−δ lnm

ε̃2
.

Hence, with

|ϕm (t)− ϕ (t)| ≤
∫ 1

0
e

(
tζa−1

(1)

)2
/2
ω (ζ)m−1

∣∣∣∣∣∣
m∑
j=1

[
cos
(
tζv∗j

)
− E

[
cos
(
tζv∗j

)]]∣∣∣∣∣∣ dζ,

we have

sup
0≤t≤

√
2γ lnm

|ϕm (t)− ϕ (t)|

≤ sup
0≤t≤

√
2γ lnm

2ε̃

∫ 1

0
e

(
tζa−1

(1)

)2
/2
ω (ζ) dζ ≤Mε̃

∫ 1

0
e
γζ2a−2

(1)
lnm

dζ

with probability at least 1−Mε̃−2a−2
(1)m

−δ lnm. Noticing that

ϑm (γ) =

∫ 1

0
e

(γ lnm)ζ2a−2
(1)
/2
dζ

≤ eM + o (1) if lim supm→∞ a
−2
(1) lnm = M ,

=
exp

(
2−1γa−2

(1) lnm
)

γa−2
(1) lnm

(1 + o (1)) if limm→∞ a
−2
(1) lnm =∞,

by properties of the Dawson integral (e.g., Abramowitz and Stegun, 1972), the assertion is
proved.

A.4 Proof of (Uniform) Consistency of Plug-in Estimator (Theorem 3)

Let ϕm (t; v̂∗) = ϕ̂m (t; v∗) = ϕ̂m (t). With

ϕ̂m (t)− ϕ (t) = ϕm (t; v̂∗)− ϕm (t; v∗) + ϕm (t; v∗)− ϕ (t;µ,m)
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and
ϕm (t; v̂∗)

πm
− 1 =

ϕm (t; v̂∗)− ϕm (t; v∗)

πm
+
ϕm (t; v∗)

πm
− 1,

it suffices to bound appropriately |ϕm (t; v̂∗)− ϕm (t; v∗)| and show
ϕm (t; v̂∗)− ϕm (t; v∗)

πm
=

oP (1) since lim supm→∞ a
−2
(1) lnm = M already implies

sup
0≤t≤

√
2γ lnm

|ϕm (t)− ϕ (t)| ≤Mε̃ (1 + o (1))→ 0

except on an event with probability at most Mε̃−2a−2
(1)m

−δ lnm→ 0 for ε̃→ 0+.
Even though

v̂∗j = Zj −
∑k

j=1

√
λjγijŵj

may not still be normal because ŵj is a penalized estimator, it is normal with variance a−2
j

conditional on ŵj and µ̂j . So we apply a conditional argument to ϕm (t; v̂∗) − ϕm (t; v∗).
Once the claim is justified conditional on each ŵj and µ̂j , it also holds unconditionally
since the sigma-algebras involved are countably generated. Conditional on ŵj and µ̂j ,

ϕm (t; v̂∗)− ϕm (t; v∗) =
1

m

m∑
j=1

(
κa−1

j

(
t; v∗j

)
− κa−1

j

(
t; v̂∗j

))
= m−1

m∑
j=1

∫ 1

−1
ω (ζ) e(tζa

−1
j )

2
/2 [cos

(
tζv∗j

)
− cos

(
tζv̂∗j

)]
dζ

= m−1
m∑
j=1

∫ 1

−1
ω (ζ) e

(
tζa−1

(1)

)2
/2
tζ sin

(
tζṽ∗j

) (
v∗j − v̂∗j

)
dζ

for some ṽ∗j strictly between v∗j and v̂∗j . By Theorem 1, there is some(
β̂, ŵ(k)

)
∈ arg min

β̃∈Rp,w̃∈Rk
L
(
β̃, w̃;λ

)
such that

∥∥ŵ(k) −w(k)

∥∥
∞ ≤ c2 except on an event with probability at most

m
(
a(1)u

)−1
exp

(
−2−1a2

(1)u
2
)
→ 0.

Therefore,

‖v∗ − v̂∗‖∞ ≤
∥∥∥T(k)T

′
(k)XI1

∥∥∥
∞
c1 +

∥∥∥T(k)T
′
(k)

∥∥∥u ≤ C8,kc1 + C9,ku
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and

sup
0≤t≤

√
2γ lnm

|ϕm (t; v̂∗)− ϕm (t; v∗)|

≤ sup
0≤t≤

√
2γ lnm

m−1
m∑
j=1

∫ 1

−1
ω (ζ) e

(
tζa−1

(1)

)2
/2
t
∣∣v∗j − v̂∗j ∣∣ dζ

≤ M
√

2γ lnm ‖v∗ − v̂∗‖∞ ≤M
√

2γ lnm (C8,kc1 + C9,ku) .

Let θ+
m =

√
2γ lnm (C8,kc1 + C9,ku). When θ+

m = o (πm),

sup0≤t≤
√

2γ lnm |ϕm (t; v̂∗)− ϕm (t; v∗)|
πm

= oP (1)

and

sup
0≤t≤

√
2γ lnm

∣∣∣∣ϕm (t; v̂∗)

πm
− 1

∣∣∣∣ = oP (1) .

When θ+
m = o

(
m1−γ), we have

supΘm(γ,Cm) sup0≤t≤
√

2γ lnm |ϕm (t; v̂∗)− ϕm (t; v∗)|
πm

= oP (1)

and

sup
Θm(γ,Cm)

sup
0≤t≤

√
2γ lnm

∣∣∣∣ϕm (t; v̂∗)

πm
− 1

∣∣∣∣ = oP (1) .

This completes the proof.
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