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Abstract

Empirical Bayes methods are privileged in data mining because they can absorb

prior information on model parameters and are free of choosing tuning parameters.

We proposed an iterated conditional modes/medians (ICM/M) algorithm to imple-

ment empirical Bayes selection of massive variables while incorporating sparsity or

more complicated a priori information. The algorithm is constructed on the basis of

iteratively minimizing a conditional loss function. The iterative conditional modes are

employed to obtain data-driven estimates of hyperparameters, and the iterative con-

ditional medians are used to estimate the model coefficients and therefore enable the

selection of massive variables. The ICM/M algorithm is computationally fast, and can

easily extend the empirical Bayes thresholding, which is adaptive to parameter spar-

sity, to complex data. Empirical studies suggest very competitive performance of the

proposed method, even in the simple case of selecting massive regression predictors.

Key Words: High Dimensional Data; Prior; Sparsity; Structured Variables
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1 Introduction

Selecting variables out of massive candidates is a challenging yet critical problem in analyzing

high-dimensional data. Because high-dimensional data are usually of relatively small sample

sizes, successful variable selection demands appropriate incorporation of a priori information.

A fundamental pierce of information is that only a few of the variables are significant and

should be included into the underlying models, leading to a fundamental assumption of

sparsity in variable selection [11]. Many methods have been developed to take full advantage

of this sparsity assumption, mostly built upon thresholding procedures [9], see Tibshirani

[31], Fan and Li [11], and others.

Recently many efforts have been devoted to selecting variables from massive candidates by

incorporating rich a priori information accumulated from historical researches or practices.

For example, Yuan and Lin [35] defined group-wise norms for grouped variables. For graph-

structured variables, Li and Li [20] and Pan et al. [29] proposed to use Laplacian matrices

and Lγ norms, respectively. Li and Zhang [21] and Stingo et al. [30] both employed Bayesian

approaches to incorporate structural information of the variables, both formulating Ising

priors.

Markov chain Monte Carlo (MCMC) algorithms have been commonly employed to de-

velop Bayesian variable selection, see, for example, George and McCulloch [13], Carlin and

Chib [6], Li and Zhang [21], and Stingo et al. [30]. However, MCMC algorithms are com-

putationally intensive and may be difficult to obtain appropriate hyperparameters. On the

other hand, penalty-based variable selection usually demands predetermination of certain

tuning parameters [e.g. 31, 11, 35, 20, 29], which challenges high-dimensional data analysis.

Although cross-validation has been widely suggested to choose tuning parameters, it may be

infeasible in certain situations, in particular the case that many variables rarely vary.

Empirical Bayes methods are privileged in high-dimensional data analysis because of

no need to choose tuning parameters. They also allow incorporating a priori information

while modeling uncertainty of such prior information using hyperparameters. For example,

Johnstone and Silverman [19] modeled the sparse normal means using a spike and slab prior.

The mixing rate of the spike and slab is taken as a hyperparameter to achieve data-driven
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thresholding, and resultant empirical Bayes estimates are therefore adaptive to sparsity of

the high-dimensional parameters. As demonstrated by Johnstone and Silverman [19], this

empirical Bayes method can work better than traditional thresholding estimators. One

important contribution of this paper is to develop a new algorithm which allows to construct

such empirical Bayes variable selection with complex data.

We propose an iterative conditional modes/medians (ICM/M) algorithm for easy imple-

mentation and fast computation of empirical Bayes variable selection (EBVS). Similar to the

iterated conditional modes [4], iterative conditional modes are for optimization of hyperpa-

rameters and parameters other than regression coefficients. Iterative conditional medians are

used to enforce variable selection. As shown in Johnstone and Silverman [19], when mixture

priors are utilized, posterior medians can lead to thresholding rules and thus help screen out

small and insignificant variables. Furthermore, ICM/M makes it easy to incorporate com-

plicated priors for the purpose of selecting variables out of massive structured candidates.

Taking the Ising prior as an example [21], we illustrate such strength of ICM/M.

The rest of this paper is organized as follows. In the next section, we will describe

the general idea behind the empirical Bayes variable selection (EBVS), and propose the

ICM/M algorithm for EBVS. We also explore to control false discovery rates (FDR) using

conditional posterior probabilities. We implement the ICM/M algorithm in Section 3 for

high-dimensional linear regression models, taking the only assumption that non-zero regres-

sion coefficients are few. Shown in Section 4 is the ICM/M algorithm when incorporating

a priori information on graphical relationship between the predictors. Simulation studies

are carried out in both Section 3 and 4 to evaluate the performance of the corresponding

ICM/M algorithms. An application to a real dataset in genome-wide association study is

presented in Section 5. We conclude this paper with a discussion in Section 6.

4



2 The General Idea

2.1 Empirical Bayes Variable Selection

Consider a general variable selection issue presented with a likelihood function,

L(Y;Xβ;ϕ), (1)

where Y is a n × 1 random vector, X is a n × p matrix containing values of p variables, β

is a p × 1 parameter vector with the j-th component βj representing the effects of the j-th

variable to the model, and ϕ includes all other auxiliary parameters.

A typical variable selection task is to identify non-zero components in β, that is, to select

variables, out of the p candidates, with effects on Y. For convenience, define τj = I{βj ̸= 0},

which indicates whether the j-th variable should be selected into the model. Further denote

τ = (τ1, τ2, · · · , τp)t.

Here we consider an empirical Bayes variable selection, which assumes priors, β ∼ π(β|τ, ψ1)× π(τ |ψ2),

ϕ ∼ π(ϕ|ψ3),
(2)

where ψ1, ψ2, and ψ3 are hyperparameters. Let ψ = (ψt1, ψ
t
2, ψ

t
3)
t, then a maximum a

posteriori (MAP) estimate is

ψ̂ = argmax
ψ

∫ ∫
L(Y;Xβ;ϕ)

[∑
τ

π(β|τ, ψ1)π(τ |ψ2)

]
π(ϕ|ψ3)dβdϕ. (3)

An empirical Bayes variable selection can proceed as finding an estimate β̂ = β̂(Y,X, ψ̂),

together with ϕ̂ = ϕ̂(Y,X, ψ̂), such that,

(β̂, ϕ̂) = argmin
β̃,ϕ̃

{
E

[
E
[
L(β̃(Y,X, ψ̂), ϕ̃(Y,X, ψ̂); β, ϕ)

∣∣β, ϕ, ψ̂] ∣∣∣∣ψ̂]} , (4)

where L is a loss function and can be set up as follows, with β̃ = β̃(Y,X, ψ̂) and ϕ̃ =

ϕ̃(Y,X, ψ̂),

L(β̃, ϕ̃; β, ϕ) = ∥β̃(Y,X, ψ̂)− β∥1 + ∥ϕ̃(Y,X, ψ̂)− ϕ∥0, (5)

where ∥ · ∥1 refers to the l1 norm, ∥ · ∥0 refers to the l0 norm. Here the zero-one loss on ϕ

follows the iterated conditional modes by Besag [4] to analyze massive data. As shown by
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Johnstone and Silverman [19], the absolute-error loss on β results in a thresholding estimate

of high-dimensional β, which is adaptive to signal sparsity when constructed with appropriate

priors on β.

The Bayesian risk in (4) can be rewritten as

R(β̃, ϕ̃|ψ̂) = E

[∑
j

E
[
|β̃j(Y,X, ψ̂)− βj|

∣∣Y,X, ψ̂]
+
∑
j

E
[
I{ϕ̃j(Y,X, ψ̂) ̸= ϕj}

∣∣Y,X, ψ̂] ∣∣∣∣ψ̂
]
, (6)

where βj and ϕj refer to the j-th components of β and ϕ respectively. When considering the

inner expectation, we observe that

β̂j = β̂j(Y,X, ψ̂) = median(βj|Y,X, ψ̂) (7)

minimizes the first part, and

ϕ̂j = ϕ̂j(Y,X, ψ̂) = mode(ϕj|Y,X, ψ̂) (8)

minimizes the second part when the corresponding posterior is unimodal.

2.2 Iterated Conditional Modes/Medians

We here consider the empirical Bayes variable selection by minimizing a Bayes risk with the

loss function defined as

LF (β̃, ϕ̃, ψ̃; β, ϕ, ψ) = ∥β̃ − β∥1 + ∥ϕ̃− ϕ∥0 + ∥ψ̃ − ψ∥0. (9)

Indeed, minimizing the corresponding Bayes risk is subject to finding β̃ = β̃(Y,X), ϕ̃ =

ϕ̃(Y,X), and ψ̃ = ψ̃(Y,X) which minimize

E
[
LF (β̃, ϕ̃, ψ̃; β, ϕ, ψ)

∣∣Y,X]
. (10)

However, for even moderately complicated model (1), minimizing (10) for optimal (β̃, ϕ̃, ψ̃)

can be difficult as it involves high-dimensional integration.
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Define a conditional loss function,

LC(β̃, ϕ̃, ψ̃; β, ϕ, ψ) =
∑
j

E
[
|β̃j − βj|

∣∣Y,X, β−j, ϕ, ψ]
+
∑
j

E
[
I{ϕ̃j ̸= ϕj}

∣∣Y,X, β, ϕ−j, ψ
]

+
∑
j

E
[
I{ψ̃j ̸= ψj}

∣∣Y,X, β, ϕ, ψ−j

]
, (11)

where β̃j, ϕ̃j, and ψ̃j are the j-th components of β̃, ϕ̃, and ψ̃ respectively; β−j refers to β

excluding the j-th component, ϕ−j refers to ϕ excluding the j-th component, and ψ−j refers

to ψ excluding the j-th component. Then,

E
[
LF (β̃, ϕ̃, ψ̃; β, ϕ, ψ)

∣∣Y,X]
= E

[
LC(β̃, ϕ̃, ψ̃; β, ϕ, ψ)

∣∣Y,X]
. (12)

We here consider iteratively minimizing (11) with an initial point at β̂(0) = β̂(0)(Y,X),

ϕ̂(0) = ϕ̂(0)(Y,X), and ψ̂(0) = ψ̂(0)(Y,X). That is, given a point (β̂(k), ϕ̂(k), ψ̂(k)), we minimize

the conditional loss function LC(β̃, ϕ̃, ψ̃; β̂
(k), ϕ̂(k), ψ̂(k)) for an optimal point (β̂(k+1), ϕ̂(k+1), ψ̂(k+1)),

which suggests
β̂
(k+1)
j = β̂j(β̂

(k)
−j , ϕ̂

(k), ψ̂(k)) = median(βj|Y,X, β̂(k)
−j , ϕ̂

(k), ψ̂(k)),

ϕ̂
(k+1)
j = ϕ̂j(β̂

(k), ϕ̂
(k)
−j , ψ̂

(k)) = mode(ϕj|Y,X, β̂(k), ϕ̂
(k)
−j , ψ̂

(k)),

ψ̂
(k+1)
j = ψ̂j(β̂

(k), ϕ̂(k), ψ̂
(k)
−j ) = mode(ψj|Y,X, β̂(k), ϕ̂(k), ψ̂

(k)
−j ).

(13)

When the sequence of {(β̂(k), ϕ̂(k), ψ̂(k)) : k = 1, 2, · · · } converges to (β̂, ϕ̂, ψ̂), then β̂ =

β̂(Y,X), ϕ̂ = ϕ̂(Y,X), and ψ̂ = ψ̂(Y,X).

The above iterative method suggests an conditional median for βj, and conditional

modes for ϕj and ψj respectively, hereafter named the iterated conditional medians/modes

(ICM/M) algorithm for implementing the empirical Bayes variable selection. Indeed, each

component of (β̂(k+1), ϕ̂(k+1), ψ̂(k+1)) is a Bayesian update of the corresponding component

of (β̂(k), ϕ̂(k), ψ̂(k)) conditional on all other components. Obviously, a consistent initial point

(β̂(0), ϕ̂(0), ψ̂(0)) leads to a well-established update (β̂, ϕ̂, ψ̂).

Note that the iterative method in (13) is well suited for parallel computing in the case of

high-dimensional data. In the rest of the paper, we will focus on ICM/M algorithm for non-

parallel computing. To accelerate update of the sequence {(β̂(k), ϕ̂(k), ψ̂(k)) : k = 1, 2, · · · }, we
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can sequentially update each component of (β̂(k+1), ϕ̂(k+1), ψ̂(k+1)) conditional on the most

recent values of all other components. Specifically, when β̂(k), ϕ̂(k) and ψ̂(k) have been

obtained in the k-th iteration, the (k + 1)-st iteration proceeds as follows,
β̂
(k+1)
j = median(βj|Y,X, β̂(k+1)

1:(j−1), β̂
(k)
(j+1):p, ϕ̂

(k), ψ̂(k)),

ϕ̂
(k+1)
j = mode(ϕj|Y,X, β̂(k+1), ϕ̂

(k+1)
1:(j−1), ϕ̂

(k)
(j+1):q, ψ̂

(k)),

ψ̂
(k+1)
j = mode(ψj|Y,X, β̂(k+1), ϕ̂(k+1), ψ̂

(k+1)
1:(j−1), ψ̂

(k)
(j+1):r).

(14)

When each β̂
(k+1)
j is also obtained as an conditional mode, the above algorithm concurs

with the iterated conditional modes(ICM) algorithm by Besag [4]. However, calculation

of conditional mode for β̂
(k+1)
j is either infeasible or practically undesirable (due to lack of

variable selection function). Indeed, Bayesian or empirical Bayes variable selection usually

follows a spike and slab prior on each βj [e.g. 25, 17], and it induces a spike and slab

posterior for each βj. While it is infeasible to obtain the mode of such a spike and slab

posterior, its median can be zero and therefore allows to select the median probability model

as suggested by Barbieri and Berger [1]. As shown in later sections, ICM/M algorithm allows

an easy extension of the (generalized) empirical Bayes thresholding methods by Johnstone

and Silverman [19] to dependent data.

2.3 Evaluation of Variable Importance

When proposing a statistical model, we are primarily interested in evaluating the importance

of variables besides its predictive ability. For example, our objective of high-dimensional data

analysis usually is to identify a list of J predictors that are most important or significant

among p predictors. This is a common practice in biomedical research using high-throughput

biotechnologies, ranking all markers and screening out a short list of candidates for follow-up

studies.

For Bayesian approach, inference to the importance of each variable can be done through

its marginal posterior probability P (βj ̸= 0|Y,X). However, this quantity involves high-

dimensional integrals which is difficult to calculate even in the case of moderate p. Further-

more, the marginal posterior probability may not be meaningful in the case that predictors

are highly correlated (which usually occurs in large p small n data set. For example, suppose
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predictor X1 and X2 are linearly dependent and both predictors are associated to a response

variable. The marginal posterior probability of X1 being included in the model might be very

high and dominates the marginal posterior probability of X2 being included in the model.

We propose a local posterior probability to evaluate the importance of a variable. That is,

conditional on the optimal point {β̂j, ϕ̂, ψ̂} obtained from empirical Bayes variable selection

through ICM/M algorithm, the importance of a variable is evaluated by its full conditional

posterior probability,

ζj = P (βj ̸= 0|Y,X, β̂−j, ϕ̂, ψ̂). (15)

Such a probability has a closed form which can be easily computed. We will show later in

simulation studies that the local posterior probability is a good indicator to quantify the

importance of variables.

Another challenging question would be how large the list of important predictors should

be. In many literatures, the numbers of important variables reported are arbitrary. For

instance, some laboratory might be interested in looking at, say, the top ten genes. Typically,

however, there is an interest to create the list such that errors are controlled in some way

such as type-I and type-II errors [10]. False discovery rate (FDR) control is widely used

in high-dimensional data since it is less conservative and has more power than controlling

familywise error rate [2].

With the local posterior probability ζ and assumption that true β is known, we can

report a list containing predictors having the posterior probability greater than some bound

κ, 0 ≤ κ < 1. Given the data, true FDR can be computed as

FDR(κ) =

p∑
j=1

I{βj = 0, ζj > κ}
/ p∑

j=1

I{ζj > κ}. (16)

Newton et al. (2004) proposed the expected FDR given the data in Bayesian scheme as

F̂DR(κ) =

p∑
j=1

(1− ζj)I{ζj > κ}
/ p∑

j=1

I{ζj > κ}. (17)

We then can select predictors to report by controlling F̂DR(κ) at a desired level. F̂DR(κ)

is just an approximation because it depends on the accuracy of the fitted model. Careful

modeling and diagnostic checking can reduce the effect of this approximation [27].
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3 Selection of Sparse Variables

Here we consider the empirical Bayes variable selection for the following regression model

with high dimensional data,

Y = Xβ + ϵ, ϵ ∼ N(0, σ2In). (18)

Further assume that the response is centered and the predictors are standardized, that is,

Yt1n = 0, Xt1n = 0p, and

Xt
jXj = n− 1, j = 1, · · · , p,

where Xj is the j-th column of X, i.e., X = (X1,X2, · · · ,Xp).

Let Ỹj = Y −Xβ +Xjβj. Assuming all model parameters except βj are known, βj has

a sufficient statistic

1

n− 1
Xt
jỸj ∼ N

(
βj,

1

n− 1
σ2

)
. (19)

To capture the sparsity of regression coefficients, we put an independent prior on each of

scaled βj as follows,

βj|σ ∼ (1− ω)δ0(βj) + ωγ(βj|σ), (20)

where δ0(·) is a Dirac delta function at zero, γ(·|σ) is assumed to be a probability density

function. This mixture prior implies that βj is zero with probability (1 − ω) and is drawn

from the nonzero part of prior, γ(·|σ), with probability ω. As suggested by Johnstone and

Silverman [19], a heavy-tailed prior such as Laplace distribution can be a good choice for

γ(·|σ), that is,

γ(βj|σ) =
α
√
n− 1

2σ
exp

(
−α

√
n− 1

σ
|βj|

)
, (21)

where α > 0 is a scale parameter. We take Jeffreys’ prior on σ as π(σ) ∝ 1/σ [18].

Note that there is a connection of using Laplace prior and the lasso. Indeed, setting ω = 1

in (20) leads to a lasso estimate with α related to a tuning parameter in the lasso, see details

in Tibshirani [31]. Our empirical Bayes variable selection allows a data-driven optimal choice

of ω. Indeed, a data-driven optimal α can also be obtained through the conditional mode

suggested by (14), which avoids the issue brought by a tuning parameter to lasso (while lasso

usually relies on cross validation to choose an optimal tuning parameter). Johnstone and

Silverman [19] also suggested a default value α = 0.5, which in general works well.
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3.1 The Algorithm

Here we implement the ICM/M algorithm described in (14). Note that ϕ = σ, and ψ = (ω, α)

or ψ = ω depending on whether α is fixed. Throughout this paper, we fix α = 0.5 as suggested

by Johnstone and Silverman [19].

To obtain β̂
(k+1)
j = median(βj|Y,X, β̂(k+1)

1:(j−1), β̂
(k)
(j+1):p, σ̂

(k), ω̂(k)), we notice the sufficient

statistic of βj in (19) and it is therefore easy to calculate β̂
(k+1)
j as stated below. Indeed,

β̂
(k+1)
j is a (generalized) empirical Bayes thresholding estimator as shown in Johnstone and

Silverman [19].

Proposition 3.1. With pre-specified values of σ and β−j,
1

n−1
Xt
jỸj is a sufficient statistic

for βj w.r.t the model (18). Furthermore, the iterative conditional median of βj in the

ICM/M algorithm can be constructed as the posterior median of βj in the following Bayesian

analysis, 
1

σ
√
n−1

Xt
jỸj|βj ∼ N

(√
n−1
σ

βj, 1
)
,

βj ∼ (1− ω)δ0(βj) + ω
√
n−1
4σ

exp
(
−

√
n−1
2σ

|βj|
)
.

The conditional mode σ̂(k+1) = mode(σ|Y,X, β̂(k+1), ω̂(k)) has an explicit solution,

σ̂(k+1) =
1

4d

(
c+

√
c2 + 16d||Y −Xβ̂(k+1)||2

)
,

where c =
√
n− 1∥β̂(k+1)∥1, and d = n+ ∥β̂(k+1)∥0 + 1. Furthermore, the conditional mode

ω̂(k+1) = mode(ω|Y,X, β̂(k+1), σ̂(k+1)) can be easily calculated as

ω̂(k+1) = ∥β̂(k+1)∥0
/
p.

3.2 Simulation Studies

To evaluate the performance of our proposed empirical Bayes variable selection (EBVS) via

ICM/M algorithm, we simulated data from model (18) with large p small n, i.e., p = 1, 000

and n = 100. There are a total of 20 non-zero regression coefficients which are β1 = · · · =

β10 = 2 and β101 = · · · = β110 = 1. The error standard deviation σ is set to one. The

predictors are partitioned into ten blocks, each block including 100 predictors which are
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serially correlated at the same level of correlation coefficient ρ. We simulated 100 datasets

for each ρ in {0, 0.1, 0.2, · · · , 0.9}.

EBVS was compared with two popularly considered approaches, i.e., lasso by Tibshirani

[31], and adaptive lasso by Zou [37]. The 10-fold cross-validation was used to choose optimal

tuning parameters for lasso and adaptive lasso respectively. The median values of prediction

error, false positive, and false negative rates were reported for each approach based on the

100 simulated datasets.

As shown in Figure 1, EBVS performs much better than both lasso and adaptive lasso

in terms of prediction error rates. In particular, when ρ ≥ 0.3, EBVS consistently reported

median prediction error rates approximately at 1.5. In comparison of lasso and adaptive

lasso, adaptive lasso has smaller prediction error rates when ρ < 0.3; but lasso has smaller

prediction error rates lasso when ρ > 0.3.
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Figure 1: Median prediction errors of lasso (dotted), adaptive lasso (dash-dotted), and EBVS

(solid) for simulation study in Section 3.2.

It is known that lasso can inconsistently select variables under certain conditions, and

adaptive lasso was proposed for solving this issue [37]. Figure 2 showed that lasso has very

high false positive rates (more than 50%), and adaptive lasso significantly lowers the false

positive rates especially when ρ ≥ 0.2. Indeed, lasso has much larger false positive rates

than all other methods. It is interesting to observe that EBVS has zero false positive rates

except in the case that ρ = 0.5 and ρ = 0.9. All methods have very low false negative rates.
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Figure 2: False positive rate (left) and false negative rate (right) of lasso (dotted), adaptive

lasso (dash-dotted), and EBVS (solid) for simulation study in Section 3.2.

Recently, Meinshausen et al. [24] proposed a multi-sample-split method to construct p-

values for high-dimensional regressions, especially in the case that the number of predictors

is larger than the sample size. Here we applied this method, as well as EBVS, to each

simulated dataset with a total of 50 sample-splits, and compared its performance with that

of ζi defined in (15). For each predictor, Figure 3 plotted the median of − log10(1 − ζi),

truncated at 10, against the median of − log10(p-value) across 100 datasets simulated from

the regression model with ρ = 0.5 and ρ = 0.9 respectively. For either model, ζi can clearly

distinguish true positives (i.e., predictors with τi ̸= 0) from true negatives (i.e., predictors

with τi = 0). However, as shown in Figure 3.b where ρ = 0.9, there is no clear cutoff of

p-values to distinguish between true positives and true negatives. Here we also observed that

FDR(κ) can be well approximated by F̂DR(κ) (results are not shown), with both dropped

sharply to zero for κ > 0.05. We therefore can select κ to threshold ζi for the purpose of

controlling FDR.

4 Selection of Structured Variables

When the information of structural relationship among predictors is available, it is unrea-

sonable to assume independent prior on each βj, j = 1, ..., p as described in previous section.

Instead, we introduce an indicator variable τ = (τ1, ..., τp)
T where τj = I{βj ̸= 0}. Then, the

prior distribution of β̃ is set to be dependent to τ . Specifically, given τj, βj has the mixture
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Figure 3: Comparison of the local posterior probabilities (with − log10(1 − ζ) truncated at

10) and p-values in evaluating variable importance. The results are based on the simulation

study of EBVS in Section 3.2. True positives are indicated by crosses and true negatives are

indicated by circles.

distribution

βj|τj ∼ (1− τj)δ0(βj) + τjγ(βj), (22)

where γ(·) is the Laplace density with the scale parameter α.

The relationship among predictors can be represented by an undirected graph G = (V,E)

comprising a set V of vertices and a set E of edges. In this case, each node is associated

with a binary valued random variable τj ∈ {0, 1} and there is an edge between two nodes

if two covariates are correlated. The following Ising model [28] is employed to model the a

priori information on τ ,

P (τ) =
1

Z(a, b)
exp

{
a
∑
i

τi + b
∑

<i,j>∈E

τiτj

}
, (23)

where a and b are two parameters, and

Z(a, b) =
∑

τ∈{0,1}p
exp

{
a
∑
i

τi + b
∑

<i,j>∈E

τiτj

}
.

The parameter b corresponds to the “energies” associated with interactions between near-

est neighboring nodes. When b > 0, the interaction is called ferromagnetic, i.e., neighboring

τi and τj tend to have the same value. When b < 0, the interaction is called antiferromag-

netic, i.e., neighboring τi and τj tend to have different values. When b = 0, there is no
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interaction, and the prior gets back to independent and identical Bernoulli distribution. The

value of a + b indicates the preferred value of each τi. That is, if a + b > 0, τi tends to be

one; if a+ b < 0, τi tends to be zero.

4.1 The Algorithm

Here we will implement ICM/M algorithm to develop empirical Bayes variable selection with

Ising prior (abbreviated as EBVSi) to incorporate the structure of predictors in modeling

process. We assume the Ising prior as homogeneous Boltzmann model, but the algorithm

can be extended for more general priors. With α = 0.5, the ICM/M algorithm described in

(14) can be proceeded with ϕ = σ and ψ = (ω, a, b).

For the hyperparameters a and b, we will calculate the conditional mode of (a, b) simulta-

neously. Conceptually, we want (â(k+1), b̂(k+1)) maximizing the prior likelihood P (τ) in (23).

However, it requires to compute Z(a, b) by summing up p-dimensional space of τ , which

demands intensive computation especially for a large p. Many methods have been proposed

for approximate calculation, see Geyer [14], Geyer and Thompson [15], Zhou and Schmidler

[36] and others. Here we will consider the composite likelihood approach [32] which is widely

used when the actual likelihood is not easy to compute. In particular, (â(k+1), b̂(k+1)) will be

obtained by maximizing a pseudo-likelihood function, a special type of composite conditional

likelihood and a natural choice for a graphical model [3].

With the Ising prior on τ (k), the pseudo-likelihood of (a, b) is as follows,

Lp(a, b) =

p∏
i=1

P (τ
(k)
i |τ (k)−j , a, b) =

p∏
i=1

exp
{
τ
(k)
i (a+ b

∑
<i,j>∈E τ

(k)
j )

}
1 + exp

{
a+ b

∑
<i,j>∈E τ

(k)
j

} .

The surface of such a pseudo-likelihood is much smoother than the joint likelihood and there-

fore easy to maximize [22]. The resultant estimator (â(k+1), b̂(k+1)) by maximizing Lp(a, b) is

biased for a finite sample size, but it is asymptotically unbiased and consistent [16, 23, 32].

The implementation of pseudo-likelihood method is fast and straightforward which is feasible

for a large scale of graph. Indeed, â(k+1) and b̂(k+1) are the logistic regression coefficients

when the binary variable τ̂
(k)
i is regressed on

∑
<i,j>∈E τ̂

(k)
j for i = 1, · · · , p.

As shown in the previous sections, the conditional median β̂
(k+1)
j can be constructed on

the basis of the following preposition.
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Proposition 4.1. With pre-specified values of σ, a, b, and β−j,
1

n−1
Xt
jỸj is a sufficient

statistic for βj w.r.t the model (18). Furthermore, the iterative conditional median of βj

in the ICM/M algorithm can be constructed as the posterior median of βj in the following

Bayesian analysis,
1

σ
√
n−1

Xt
jỸj|βj ∼ N

(√
n−1
σ

βj, 1
)
,

βj ∼ (1−ϖj)δ0(βj) +ϖj

√
n−1
4σ

exp
(
−

√
n−1
2σ

|βj|
)
,

where the probability ϖj is specified as follows,

ϖ−1
j = 1 + exp

{
− a− b

∑
k:<j,k>∈E

τk

}
.

The conditional mode σ̂(k+1) = mode(σ|Y,X, β̂(k+1), ω̂(k)) has an explicit solution,

σ̂(k+1) =
1

4d

(
c+

√
c2 + 16d||Y −Xβ̂(k+1)||2

)
,

where c =
√
n− 1∥β̂(k+1)∥1, and d = n+ ∥β̂(k+1)∥0 + 1.

4.2 Simulation Studies

Here we simulated large p small n datasets from model (18) with structured predictors, i.e.,

the values of βj depend on correlated τj. We here consider two different correlation structures

of τi. Both EBVS and EBVSi were applied to each simulated dataset. They were compared

with two other methods, i.e., lasso and adaptive lasso.

Case I. Markov Chain. For each j = 1, · · · , p, βj = 0 if τj = 0; and if τj = 1, βj is

independently sampled from a uniform distribution on [0.3, 2]. The indicator variables τ1,

· · · , τp form a Markov chain with the transition probabilities specified as follows,

P (τj+1 = 0|τj = 0) = 1− P (τj+1 = 1|τj = 0) = 0.99;

P (τj+1 = 0|τj = 1) = 1− P (τj+1 = 1|τj = 1) = 0.5.

The first indicator variable τ1 is sampled from Bernouli(0.5). The error variance is fixed

at one. For each individual, its predictors were simulated from AR(1) with correlation

coefficient ρ ranging from 0 to 0.9 with step 0.1.
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Similar to the simulation study in Section 3.2, the prediction error rates of true parameters

are close to the error variance which is one, see Figure 4. EBVS performed slightly better

than adaptive lasso, and both performed much better than lasso. Lasso, adaptive lasso,

and EBVS all presented varying prediction error rates when ρ goes from 0 to 0.9. However,

the prediction error rates of EBVSi are rather stable for varying values of ρ, and are much

smaller than that of the other three methods.
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Figure 4: Median prediction errors of lasso (dotted), adaptive lasso (dash-dotted), EBVS

(dashed), and EBVSi (solid) for simulation study of Case I.

Shown in Figure 5 are the false positive rates and false negative rates of different methods.

Not surprisingly, lasso has false positive rates over 70%, much higher than that of other

methods. Adaptive lasso significantly lowered the false positive rates, which is still more

than 10%. Instead both EBVS and EBVSi reported false positive rates under 10%. Indeed,

EBVS reported false positive rates at zero for different values of ρ; and EBVSi reported false

positive rates at zero when ρ < 0.6, and and 0.1 when ρ ≥ 0.6. However, EBVSi reported

false negative rates lower than EBVS. Therefore, EBVS tends to select correct true positives

by including fewer true positives in the final model than the model obtained by EBVSi.

We then conjecture that, when covariates are highly correlated, EBVSi tends to select more

variables into the model. In particular, if one covariate is selected into the model, its highly

correlated neighboring predictors are preferred to be included in the model as false positives.

Figure 6 shows FDR(κ) and F̂DR(κ) of EBVSi for the models with ρ = 0.5 and ρ = 0.9
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Figure 5: False positive rate (left) and false negative rate (right) of lasso (dotted), adaptive

lasso (dash-dotted), EBVS (dashed), and EBVSi (solid) for simulation study of Case I.

respectively (we also observed that FDR(κ) of EBVS is similar to that of EBVSi, which is not

shown). Overall, the estimate F̂DR(κ) dominates FDR(κ), i.e., the true FDR. Therefore,

we will be conservative in selecting variables when controlling FDR using F̂DR(κ). For

example, we would like to list important predictors while controlling FDR at 0.1 for the

model with ρ = 0.9. We should select κ around 0.1 based on FDR(κ). However, we will

select κ around 0.4 based on F̂DR(κ), which suggests a true FDR as low as zero.
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Figure 6: Median true FDR (solid) and estimated FDR (dotted) versus κ plots based on the

results from EBVSi for simulations in Case I.

Plotted in Figure 7 are the p-values, calculated using the multi-sample-split method [24],

against ζj for each predictor. For both EBVS and EBVSi, ζj quantified variable importance

better than p-values in terms of distinguishing true positives from true negatives. Overall,

EBVSi outperforms EBVS since it provides larger values of ζ for true positives, while both
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EBVS and EBVSi keep true negatives with ζj close to zero. Indeed, EBVS produced ζj

close to 0 for several true positives while EBVSi produced larger values of ζj for these true

positives. We then summarize empirically that, by incorporating a priori information, EBVSi

has more power to detect true positives than EBVS.

a. EBVS, ρ = 0.5 b. EBVS, ρ = 0.9
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c. EBVSi, ρ = 0.5 d. EBVSi, ρ = 0.9
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Figure 7: Comparing the plots of local posterior probabilities (with − log10(1− ζ) truncated

at 10) versus p-values from EBVS and EBVSi in simulation study of Case I. True positives

are indicated by crosses and true negatives are indicated by circles.

Case II. Pathway Information. To mimic a real genome-wide association study

(GWAS), we took values of some single nucleotide polymorphisms (SNPs) in Framingham

dataset [7] to generate X in model (18). Specifically, 24 human regulatory pathways were

retrieved from Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and involved

1,502 genes. For each gene involved in these pathways, at most two SNPs listed in Fram-

ingham dataset were randomly selected out of those SNPs residing in the genetic region.
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If no SNPs could be found inside the genetic region, a nearest neighboring SNP would be

identified. A total of 1,782 SNPs were selected. We first identified 952 unrelated individuals

out of Framingham dataset, and used them to generated predictor values of the training

dataset. For the rest of Framingham dataset, we similarly identified 653 unrelated indi-

viduals to generate predictor values of the test dataset. Five pathways were assumed to

be associated to the phenotype Y . That is, all 311 SNPs involved in these five pathways

were assumed to have nonzero regression coefficients, which were randomly sampled from a

uniform distribution ranging over [0.5, 3]. The error variance is 5. A total of 100 datasets

were simulated.

As shown in Table 1, lasso has relatively low prediction error rate. However, its median

false positive rate is as high as 69%, much higher than others. Adaptive lasso (LASSOa),

on the other hand, has very large prediction error rate but its false positive rate is much

lower than lasso. EBVS presented the lowest false positive rate among all the methods, and

its false negative rate is also smaller than that of adaptive lasso. Indeed, with initial values

obtained from lasso, EBVS reduced the false positive rate from lasso by more than 98%. By

incorporating the pathway information using an Ising prior on τ , EBVSi reported the lowest

prediction error rate. Furthermore, EBVSi compromised between lasso, adaptive lasso, and

EBVS to balance well between the false positive rate and false negative rate.

Table 1: Results of Simulation Study on Case II.

Method Prediction Error (s.e.) False Positive (s.e.) False Negative (s.e.)

LASSO 30.6928(.4050) .6905(.0004) .0204(.0004)

LASSOa 206.1994(.5726) .0744(.0017) .1266(.0002)

EBVS 95.3686(1.8820) .0118(.0010) .0970(.0008)

EBVSi 21.7731(.2320) .0308(.0015) .0394(.0003)

5 Real Data Analysis

Here empirical Bayes variable selection via ICM/M algorithm was applied to publicly avail-

able Framingham dataset [7] to find SNPs associated to vitamin D level. The SNPs of the

dataset were preprocessed following common criteria of GWAS, that is, both missingness
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per individual and missingness per SNP are less than 10%; minor allele frequency (MAF) is

no less than 5%; and the significance level of Hardy-Weinberg test on each SNP is 0.001. It

resulted in a total of 370,773 SNPs left, and 84,834 of them resided in 2,167 genetic regions

involving 112 pathways relevant to vitamin D level. We pre-screened SNPs by selecting those

having p-values of univariate tests smaller than 0.1, and ended with 7,824 SNPs for the fol-

lowing analysis. As in Section 4.2, a training dataset and a test dataset were constructed

with 952 and 519 unrelated individuals, respectively. The response variable in this analysis

is the log-transformed vitamin D level.

We applied lasso, adaptive lasso, EBVS, and EBVSi to the training dataset, and calcu-

lated the prediction error rates using the test dataset. The results are reported in Table 2.

While identifying much more SNPs than all other methods, lasso reported the largest pre-

diction error rate. EBVS has the smallest prediction error rate though it identified only one

SNP. Adaptive lasso (LASSOa) and EBVSi each identified five SNPs, and their prediction

error rates are slightly higher than that of EBVS.

Table 2: Prediction Error Rates for Framingham Dataset.

Method Prediction Error Rates No. of Identified SNPs

LASSO .2560 14

LASSOa .2085 5

EBVS .2078 1

EBVSi .2121 5

Presented in Table 3 are the 11 SNPs identified to have non-zero regression coefficients by

adaptive lasso, EBVS, and EBVSi. The only SNP, 102773, which was identified by EBVS,

was identified by all other methods. While adaptive lasso and EBVSi each identified five

SNPs with non-zero regression coefficients, there are only three commonly identified SNPs,

i.e., 053887, 102773, and 065143. Both SNP 133907 identified by EBVSi and SNP 079089

identified by EBVS reside on chromosome 17, and are neighboring to each other with 16k

bases in between. Instead the two SNPs on chromosome 4 are far apart from each other.

As in the previous section, we also took the multi-sample-split method to calculate p-

values based on 50 sample splits for all methods. When we followed Benjamini and Hochberg

[2] to control FDR at 0.1, none of these methods reported any significant SNPs, though SNP
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Table 3: Results of Analyzing Framingham Data.

Chromosome-SNP

1-053887 4-510894 4-1361174 5-102773 8-065143 17-133907 17-079089

β̂ LASSO .0412 0 .0355 .0402 0 0 0

LASSOa .1521 0 .0434 .1539 -.0200 0 .0167

EBVS 0 0 0 .3778 0 0 0

EBVSi .2417 -.0542 0 .3047 -.0857 .1093 0

p-value LASSO .2694 .1998 1 .6050 1 1 1

LASSOa .2060 .0490 1 .0003 1 1 1

EBVS .3138 .1998 1 .0187 1 1 1

EBVSi .0837 .1998 1 .0034 1 1 1

ζ EBVS .1277 .0133 .0347 .9976 .0981 .0869 .0966

EBVSi .7609 .5275 .3269 .9718 .7464 .8450 .0009

102773 by adaptive lasso has the p-value as small as 0.0003. Instead, when controlling

F̂DR(κ) ≤ 0.1 for both EBVS and EBVSi, EBVS identified only SNP 102773, and EBVSi

identified both SNP 102773 and 133907, with κ = 0.8. Note that SNP 133907 is one of the

neighboring pair on chromosome 17. As shown in the simulation studies, F̂DR(κ) usually

overestimated FDR(κ), so we expect that FDR(.08) < 0.1 for both EBVS and EBVSi.

6 Discussion

Here an empirical Bayes variable selection (EBVS) is proposed to extend empirical Bayes

thresholding [19] for high-dimensional dependent data, allowing incorporation of compli-

cated a priori information on model parameters. An iterative conditional modes/medians

(ICM/M) algorithm is proposed to implement it by iteratively minimizing the conditional

loss function (11). Without consideration of parallel computation, we can cycle through

each coordinate of the parameters to minimize this loss function, which results in the algo-

rithm described in (14). The idea of cycling through coordinates has been revived recently

for analyzing high dimensional data. For example, the coordinate descent algorithm has

been suggested to obtain penalized least squares estimates, see Fu [12], Daubechies et al.

[8], Wu and Lange [34], and Breheny and Huang [5]. However, a direct application of the
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coordinate descent algorithm to minimize the Bayes risk, or equivalently the conditional

expectation (10), is challenged with the same difficulties as in directly minimizing the Bayes

risk. However, an ICM/M algorithm can be easily implemented.

Without a priori information other than that regression coefficients are sparse, many

lasso-type methods have been proposed with some tuning parameters. It is challenging

to select a value for the tuning parameters, and in practice the cross-validation method is

widely used. However, high-dimensional data are usually of small sample sizes, and available

model fitting algorithms demand intensive computation, both of which disfavor the cross-

validation method. In particular, when genome-wide association studies focus more and more

on complex diseases associated with rare variants [26], the limited data usually contain large

number of SNPs which differ in a tiny pool of individuals. It is almost infeasible to take a

cross-validation method as the tiny pool of unique individuals for a rare variant is more likely

to be included in the same fold. Instead, our proposed empirical Bayes variable selection

obtains data-driven hyperparameters via conditional modes of the ICM/M algorithm, which

takes full advantage of each precious observation in the small sample.

With a large number of predictors and complicated correlation between estimates, classi-

cal p-values are difficult to compute and it is therefore challenging to evaluate the significance

of selected predictors. Wasserman and Roeder [33], and Meinshausen et al. [24] recently pro-

posed to calculate p-values by splitting the samples. That is, when a sample is split into

two folds, one fold is used as the training data to select variables, and the other is used

to calculate p-values of selected variables. Similar to applying the cross-validation method,

splitting samples significantly lowers the power of variable selection and p-value calculation,

especially for high-dimensional data of small sample sizes. Again, it is almost infeasible to

apply such a splitting method to genome-wide association studies with rare variants.

As shown in Section 4, an Ising model as (23) can be used to model a priori graphical

information on predictors. Maximizing pseudo-likelihood approach is utilized to obtain the

conditional mode of the Ising model parameters, and therefore the ICM/M algorithm can be

easily implemented. Indeed, at each iteration of the ICM/M algorithm, we cycle through all

parameters by obtaining conditional modes/medians of one parameter (or a set of parame-

ters) at one time, and therefore, many classical approximation methods for low-dimensional
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issues may be used to simplify the implementation. On the other hand, the Ising prior (23)

can also be modified to incorporate more complicated a priori information on predictors.

For example, we may multiply a weight wij to the interaction τiτj to model the known rela-

tionship between the i-th and j-th predictors. A copula model may be established to model

more complicated graphical relationship between the predictors.
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Appendix A. Technical Details of the ICM/M Algo-

rithms

A.1 The Algorithm in Section 3.1

Given β̂(k), σ̂(k), and ω̂(k) from the k-th iteration, the (k+1)-st iteration of ICM/M algorithm

can proceed in the order of β̂
(k+1)
1 , · · · , β̂(k+1)

p , σ̂(k), and ω̂(k), based on their fully conditional

distributions.

Let  Ỹj = Y −
∑j−1

l=1 Xlβ
(k+1)
l −

∑p
l=j+1Xlβ

(k)
l ,

zj = Xt
jỸj

/
(σ̂(k)

√
n− 1).

Following Proposition 3.1, β̂
(k+1)
j is updated as the median value of its posterior distribution

conditional on (zj, ω̂
(k), σ̂(k)).

Let

F̃ (k+1)(0|zj) = P (βj ≥ 0|zj, ω̂(k), σ̂(k))

=
1− Φ(0.5− zj)

[1− Φ(zj + 0.5)]ezj + Φ(zj − 0.5)
,

and ωj = P (βj ̸= 0|zj, ω̂(k), σ̂(k)) which can be calculated as follows,

ω−1
j = 1 + 4(1/ω̂(k) − 1)

(
Φ(zj − 0.5)

ϕ(zj − 0.5)
+

1− Φ(zj + 0.5)

ϕ(zj + 0.5)

)−1

.

If zj > 0, as shown in Johnstone and Silverman (2005), the posterior median β̂
(k+1)
j is zero

if ωjF̃
(k+1)(0|zj) ≤ 0.5; otherwise,

β̂
(k+1)
j =

σ̂(k)

√
n− 1

{
zj − 0.5− Φ−1

(
[1− Φ(zj + 0.5)]ezj + Φ(zj − 0.5)

2ωj

)}
.

If zj < 0, β̂
(k+1)
j can be computed on the basis of its antisymmetry property. That is, when

a function β̂(zj) = β̂(k+1) is defined, then β̂(−zj) = −β̂(zj).

The conditional mode σ̂(k+1) can be easily derived following the fact that σ̂(k+1) =

mode(σ|Y,X, β̂(k+1)), and the conditional mode ω̂(k+1) can be easily derived following the

fact that ω̂(k+1) = mode(ω|β̂(k+1)).
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A.2 The Algorithm in Section 4.1

Following Proposition 4.1, β̂
(k+1)
j is updated as the median value of its posterior distribution

conditional on (zj, ϖ̂j, σ̂
(k)), where ϖ̂j is calculated as follows,

ϖ̂−1
j = 1 + exp

{
− â(k+1) − b̂(k+1)

∑
k:<j,k>∈E

τ̂k

}
,

with τ̂k = I{β̂(k+1)
k ̸= 0} for k = 1, · · · , j − 1; and τ̂k = I{β̂(k)

k ̸= 0} for k = j + 1, · · · , p.

The conditional median β̂
(k+1)
j can be computed following A.1, except that the posterior

probability ωj = P (βj ̸= 0|zj, ϖ̂j, σ̂
(k)) should be updated as follows,

ω−1
j = 1 + 4(1/ϖ̂j − 1)

(
Φ(zj − 0.5)

ϕ(zj − 0.5)
+

1− Φ(zj + 0.5)

ϕ(zj + 0.5)

)−1

.
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