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Abstract

Suppose that the p-value for an hypothesis test has a Uniform [0,1]

distribution when the null hypothesis is true. This paper proposes a

”rough and ready” rule for the interpretation of the evidence corre-

sponding to such p-values. The rule is to use B̄∗(p) = 1/{epln(1/p)}

as an upper bound on the Bayes factor against the null hypothesis

for p ≤ 1/e = 0.368 . The rule is found to work well for two-sided

z-tests, one-sided z-tests, and two-sided t-tests with degrees of free-

dom at least in the teens. The rule is plausible for Chi-squared tests.

If the prior distribution under the alternative is chosen so that the

median p-value is between .05 and .01, then (3/4)B̄∗(p) is found to be

a good ballpark estimate of the Bayes factor in these situations when

the p-value is between .05 and .001.

Keywords: Bayes factors, z tests, t tests, Chi-squared test
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1 Introduction

Consider some large family of point-null hypotheses whose plausibilities are

to be assessed. The family might come from some particular area of science,

and the family might be further restricted, for example to one-sided z-tests

or to two-sided t-tests with degrees of freedom between 10 and 20. Suppose

that, in this family, some of the null hypotheses are false and some are true,

with r being the ratio of false hypotheses to true hypotheses. We assume

that p-values for true null hypotheses behave like independent Uniform[0,1]

random variables (meaning that, for 0 ≤ a ≤ b ≤ 1, the fraction of true-

null p-values that fall in [a, b] is b − a). Suppose that p-values for false

null hypotheses behave collectively like independent random variables with

continuous density f(p) (meaning that, for 0 ≤ a ≤ b ≤ 1 , the fraction of

false-null p-values that fall in [a, b] is
∫ b
a
f(p) dp) . Then the ratio of false

to true nulls among p-values near p0 will be approximately rf(p0), since

f(p0) = f(p0)/1 is the Bayes factor against the null hypothesis when the

p-value equals p0.

One can view the hypothesis-testing scenario of the previous paragraph

as a p-value sorting process. If we divide the unit interval [0,1] into many

narrow sub-interval ”bins”, perhaps like (0.04, 0.05] and (0.009, 0.01] and

(0.004, 0.005] for example, then the ratio of false to true null hypotheses

within a p-value bin centered at p0 will be approximately rf(p0) (assuming

that the family of tested null hypotheses is large enough for the law of large
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numbers to hold for that bin, and that the average of f(p) over the bin is

approximately f(p0)).

The discussion so far has been “frequentist”, in that r and f(p) are de-

scribed in terms of frequencies in a large population of null hypothesis tests.

The value f(p0) of course also has a Bayesian interpretation. If one’s prior

probabilities imply a density f(p) when the null is false, then f(p0) will equal

the ratio of posterior odds to prior odds (false versus true) if the only data

is that the p-value is p0. In either case, it is reasonable to regard f(p0) as

a measure of the evidence against the null hypothesis corresponding to a

p-value of p0.

Given enough data from a scientific field, one could try to estimate both

the false-to-true odds r and features of the false-null density f(p) for that

field, perhaps also conditioning on the type of test statistic. For example,

Sterne and Smith (2001) claim that r = 1/9 “is consistent with the epi-

demiological literature” and estimate that the average power for false nulls

is about 1/2. Such estimation of the f(p) density, while very worthwhile, has

to contend with difficulties like hard-to-model publication bias, changes over

time, and hypotheses whose truth is never definitively resolved. However,

given the key role of f(p) in the “p-value sorting process” described above, a

generally applicable “rule of thumb” describing the typical behavior of f(p)

might be useful in interpreting particular p-values and, more generally, in

understanding problems involving the reproducibility of science.

This paper will examine the use of B̄∗(p) = 1/{epln(1/p)} as an up-
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per bound on f(p), following up on the considerations in Sellke, Bayarri,

and Berger(2001). The formula for B̄∗(p) is initially motivated by plausible

qualitative requirements on f(p), and then the issue of whether B̄∗(p) is an

upper bound on f(p) in various standard situations is examined. Table 1

gives B̄∗(p) for several reference p-values.

p .1 .05 .01 .005 .001
1/ep ln(1/p) 1.60 2.46 7.99 13.89 53.25

Table 1: Values of 1/{epln(1/p)} for various reference p-values.

2 Derivation of B̄∗(p) = 1/epln(1/p)

If the conditional probability of the null hypothesis, given the p-value, de-

creases as p decreases and decreases to zero (or at least to a very small value)

as p decreases to zero, then f(p) will be decreasing in p and will increase to

infinity (or at least up to some very large value) as p decreases to zero. One

would also expect f(p) to be rather smooth, both because of the typical

smoothness of parametric densities and also because of smoothness in the

H1 prior on background parameters. A family of densities with the right

qualitative behavior is the Beta densities

f(p|ζ) = ζpζ−1, 0 < ζ ≤ 1.

While the actual f(p) may not closely resemble any particular member

of this beta family, it is plausible that, for each fixed p in [0,1] (or at least

for a range of p-values of primary interest, like .001 ≤ p ≤ .05) the value of
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f(p) is less than f(p|ζ) for some ζ.

Calculus shows that, for p ≤ e−1, the ζ which maximizes f(p|ζ) is ζ =

1/ln(1/p), and

f(p|ζ = 1/ln(1/p)) = B̄∗(p) = 1/epln(1/p).

For p ≥ e−1, the ζ in (0,1] which maximizes f(p|ζ) is ζ = 1, for which

f(p|ζ = 1) is the Uniform [0,1] density.

So, the upper bound B̄∗(p) = 1/epln(1/p) for p ≤ e−1 amounts to assum-

ing that the density f(p) is bounded above for p ≤ e−1 by the ”super-density”

1/epln(1/p), whose integral over e−1 ≤ p < 1 is infinity.

Let Y = ln(1/p). Then f(p|ζ) = ζpζ−1 implies P (Y ≥ y) = P (p ≤

e−y) = e−ζy for y ≥ 0, so that Y has an Exponential distribution with hazard

rate ζ when p has density f(p|ζ). The null distribution of Y is standard

Exponential, with ζ = 1. Let f1(y) be the density of Y corresponding to the

actual H1 density f(p) for p. If f1(y) has decreasing hazard rate h1(y), then

f1(y) = h1(y)exp(−
∫ y
0
h1(z)) dz) ≤ h1(y)e−yh1(y)

and the Bayes factor against the null is

B(y) = f1(y)/e−y ≤ h1(y)ey−yh1(y) = h1(y)ph1(y)−1 = f(p|ζ = h1(y)) ≤

B̄∗(p) = 1/epln(1/p) if p ≤ e−1.

Hence, the upper bound B̄∗(p) = 1/{epln(1/p)} on the Bayes factor

against the null holds for p ≤ e−1 if Y = ln(1/p) has decreasing hazard rate

under the alternative.

The author will forgive the reader if the reader does not find the above

derivation of B̄∗(p) completely convincing. Let us examine whether the
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bound B̄∗(p) holds in a variety of standard testing situations.

2.1 Two-sided z tests

Suppose that X ∼ N(θ, σ = 1) and that we test H0 : θ = 0 versus H1 : θ 6= 0

based on test statistic T = |X|. The usual p-value when T = t is of course

2(1 − Φ(t)). Edwards, Lindman, and Savage(1963) showed that, if θ has

a Normal distribution with mean 0 under H1, then the Bayes factor B(t)

against the null satisfies

B(t) ≤ exp(t2/2)/(t
√
e) = B̄NOR(t) for t ≥ 1.

Figure 1 graphs the ratio B̄NOR(t)/B̄∗(p(t)) for 1 ≤ t ≤ 5. The graph

suggests that B̄∗(p(t)) is an upper bound on B̄NOR(t) for all t ≥ 1. In fact,

it follows from the log-convexity of Mills’ ratio (Theorem 2.5(a) in Baricz

(2008)) that Y = ln(1/p) has decreasing hazard rate when θ has a Normal

prior with mean 0, which implies that B̄NOR(t) ≤ B̄∗(p(t)) when t ≥ 1 for the

Edwards-Lindman-Savage bound B̄NOR(t). Using Mills’ ratio to approximate

the p-value shows that this ratio B̄NOR(t)/B̄∗(p(t)) converges to
√
e/(2π) =

0.6577 as t goes to ∞.

B̄NOR(1.96) = 2.01, and B̄NOR(2.576) = 6.50, so these Edwards-Lindman-

Savage bounds on the Bayes factor against the null are smaller than is con-

sistent with the conventional interpretation of evidence corresponding to the

p-values .05 and .01. A naive explanation of this discrepancy might be to

attribute it to special features of Normal priors, such as thin tails. Berger

and Sellke (1987) showed that assuming only that the alternative density is
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Figure 1: B̄NOR(t)/B̄∗(p(t)) is solid curve. B̄US(t)/B̄∗(p(t)) is dashed curve.

symmetric and unimodal about 0 gave qualitatively similar upper bounds

B̄US(1.96) = 2.45 and B̄US(2.576) = 8.17. (The symmetry is in fact irrel-

evant if the analysis is based on T , with the sign of X ignored. Note also

that the maximum Bayes factor B̄US(t)will always be attained by a symmet-

ric Uniform distribution.) Figure 1 also shows the ratio B̄US(t)/B̄∗(p(t)) for

1 ≤ t ≤ 5. Using Mills’ ratio to approximate the p-value shows that this

ratio B̄US(t)/B̄∗(p(t)) converges to e/2 = 1.36 as t goes to ∞.

Let BNOR(2.73)(t) be the Bayes factor against H0 when θ has a N(0, σ =
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2.73) distribution under H1. Under this H1 prior, the average power of

a .05 level test is 1/2. Let BNOR(3.68)(t) be the Bayes factor against H0

when θ has a N(0, σ = 3.68) distribution under H1. Under this H1 prior,

the average power of a .01 level test is 1/2. Figure 2 shows the ratios

BNOR(2.73)(t)/B̄
∗(p(t)) and BNOR(3.68)(t)/B̄

∗(p(t)) for 1 ≤ t ≤ 5. Figure

2 also shows the ratio B±4.85(t)/B̄
∗(p(t)) for the Bayes factor correspond-

ing to the Efron-Gous(2001) Uniform[−4.85, 4.85] “break-even” H1 prior, for

which the Bayes factors here correspond to the Efron-Gous interpretation of

R.A.Fisher’s strength-of-evidence scale for p-values. For p between .05 and

.001 (meaning t between 1.96 and 3.291), BNOR(2.73)(t) and BNOR(3.68)(t) are

between (.6)B̄∗(p(t)) and (.8)B̄∗(p(t)), while B±4.85(t) is between (.7)B̄∗(p(t))

and (1.1)B̄∗(p(t)) over this range.

2.2 One-sided z tests

Suppose we test H0 : θ = 0 versus H1 : θ > 0 based on test statistic

T ∼ N(θ, 1). The standard p-value when T = t is 1−Φ(t)).

Let B̄ABSNOR(t) be the maximum Bayes factor against H0 when θ has

the distribution of the absolute value of a mean 0 Normal random variable

under H1. Let B̄EXP (t) be the maximum Bayes factor against H0 when θ

has an Exponential distribution under H1. Let B̄UNI(t) be the maximum

Bayes factor against H0 when θ has a unimodal distribution on [0,∞) with

mode 0. (The maximum will always be attained by a Uniform[0, b(t)] distri-

bution.) Figure 3 plots the ratios B̄ABSNOR(t)/B̄∗(p(t)) ,B̄EXP (t)/B̄∗(p(t)),
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Figure 2: Curve 2A is BNOR(2.73)(t)/B̄
∗(p(t)), where BNOR(2.73)(t) is the

Bayes factor for the mean 0 normal H1 prior with median p-value .05.
Curve 2B is BNOR(3.68)(t)/B̄

∗(p(t)), where BNOR(3.68)(t) s the Bayes factor
for the mean 0 normal H1 prior with median p-value .01. Curve 2C is
B±4.85(t)/B(p(t), where B±4.85(t) is the Bayes factor for the U[-4.85, 4.85]
”break-even” H1 prior.
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and B̄UNI(t)/B̄
∗(p(t)) for 1 ≤ t ≤ 5. These ratios respectively converge to√

e/(2π) = 0.6577, to 1/2, and to e/2 = 1.36 as t goes to ∞.

LetBABSNOR(2.27)(t) be the Bayes factor when θ has the distribution of the

absolute value of a N(0, σ = 2.27) random variable under H1. Under this H1

prior, the average power of a .05 level test is 1/2. Let BABSNOR(3.307)(t) be the

Bayes factor when θ has the distribution of the absolute value of a N(0, σ =

3.307) random variable under H1. Under this H1 prior, the average power of a

.01 level test is 1/2. Figure 4 graphs the ratios BABSNOR(2.27)(t)/B̄
∗(p(t)) and

BABSNOR(3.307)(t)/B̄
∗(p(t)), along with the previously graphed B̄ABSNOR(t)/B̄∗(p(t)).

For p between .05 and .001 (meaning t between 1.645 and 3.09), BABSNOR(2.27)(t)

and BABSNOR(3.307)(t) are between (.7)B̄∗(p(t)) and B̄∗(p(t)).

Let BEXP (.476)(t) be the Bayes factor when θ has an Exponential distribu-

tion with λ = .476 under H1. Under this H1 prior, the average power of a .05

level test is 1/2. Let BEXP (.319)(t) be the Bayes factor when θ has an Expo-

nential distribution with λ = .319 under H1. Under this H1 prior, the average

power of a .01 level test is 1/2. Let B[0,4.85](t) be the Bayes factor when θ has a

Uniform[0,4.85] distribution under H1. According to Efron and Gous(2001),

the Bayes factors here for this Uniform[0,4.85] prior are in good agreement

with the Efron-Gous interpretation of R.A.Fisher’s strength-of-evidence scale

for p-values. Figure 5 plots the ratios of these Bayes factors against B̄∗(p)

for 1 ≤ t ≤ 5, along with the previously graphed ratios B̄EXP (t)/B̄∗(p(t))

and B̄UNI(t)/B̄
∗(p(t)). For p between .05 and .001 (meaning t between

1.645 and 3.09), BEXP (.476)(t) and BEXP (.319) are between(.6)B̄∗(p(t)) and
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Figure 3: Curve 3A is B̄ABSNOR(t)/B̄∗(p(t)) , curve 3B is B̄EXP (t)/B̄∗(p(t)),
and curve 3C is B̄UNI(t)/B̄

∗(p(t))

(.85)B̄∗(p(t)), while B̄UNI(t) is between (.7)B̄∗(p(t)) and (1.15)B̄∗(p(t)) over

this range.

2.3 Two-sided t tests

Suppose we see X1, ..., Xk+1 which are iid Normal(θ, SD = σ) random vari-

ables. We test H0 : θ = 0 versus H1 : θ 6= 0 based on the t-statistic

T =
√

(k + 1)k)X̄k+1/
√

(
∑

(Xi − X̄k+1)2), whose distribution under H0 is
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Figure 4: Curve 4A is B̄ABSNOR(t)/B̄∗(p(t)) , curve 4B is
BABSNOR(2.27)(t)/B̄

∗(p(t)), and curve 4C is BABSNOR(3.307)(t)/B̄
∗(p(t)).
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Figure 5: Curve 5A is B̄EXP (t)/B̄∗(p(t)) . Curve 5B is
BEXP (.476)(t)/B̄

∗(p(t)). Curve 5C is BEXP (.319)(t)/B̄
∗(p(t)). Curve 5D

is B̄UNI(t)/B̄
∗(p(t)). Curve 5E is B[0,4.85](t))/B̄

∗(p(t))
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the t-distribution with k degrees of freedom. The behavior of T is determined

by the ratio θ/σ. Suppose that θ/σ has a Normal(0, SD = τ) distribution

under H1. Then under H1, T/
√

1 + (k + 1)τ 2 will have a t-distribution with

k degrees of freedom. Calculus shows that the maximum (with respect to τ)

Bayes factor against H0 when |T | = t ≥ 1 is

B̄k(t) = [((k + t2)/(k + 1))(k+1)/2]/t.

As one would expect, B̄k(t) converges to B̄NOR(t) for fixed t ≥ 1 as k goes

to∞, and the p-value for any t > 0 converges as k goes to∞ to 2(1−Φ(t)),

so B̄k(t) ≤ B̄∗(p(t)) for k sufficiently large, for any fixed t ≥ 1. Table 2

shows the minimum values of k for which we have B̄k(t) ≤ B̄∗(p(t)), for

various standard p-values. For each p, the inequality B̄k(t) ≤ B̄∗(p) holds

for k ≥ these minimum values. For 10 degrees of freedom and .05 ≥ p ≥ .001,

B̄10(t) can exceed B̄∗(p(t)), but not by that much. Figure 6 graphs the ratio

B̄10(t)/B̄
∗(p(t)) for 1 ≤ t ≤ 6, with points corresponding to various p-values

indicated. For k = 10 and .05 ≥ p ≥ .001, B̄10(t) is very slightly below

B̄∗(p(t)) near p = .05 and otherwise between B̄∗(p(t)) and 1.25)B̄∗(p(t))

p .05 .01 .005 .001
minimum k 10 14 16 19

Table 2: Minimun degrees of freedom k to guarantee B̄k(t) ≤ B̄∗(p(t)) for t
test Bayes factor upper bound B̄k(t), for various p-values.

When k is small and θ/σ is Normal(0, SD = τ), the maximum Bayes

factor (maximizing over τ) can be much larger than B̄∗(p) for .05 ≤ p ≤

.001. Figure 7 graphs the ratio B̄3(t)/B̄
∗(p(t)) for 1 ≤ t ≤ 6, with points

14
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Figure 6: Graph of B̄10(t)/B̄
∗(p(t)). For k = 10 degrees of freedom and

.05 ≥ p ≥ .001, B̄10(t) is between (.99)B̄∗(p(t)) and (1.25)B̄∗(p(t))

corresponding to various p-values indicated.

For other types of t-tests (one-sided and/or two-sample, etc.), the situa-

tion will likewise converge to z-tests as the degrees of freedom increase to∞.

Numerical calculations like those above would show how fast this convergence

occurs.
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16



2.4 Chi-Squared Tests

Suppose that we see X = (X1, ..., Xk) which is multivariate normal Nk(θ, I)

with mean vector θ and identity covariance matrix. The usual p-value for

testing H0 : θ = 0 against H1 : θ 6= 0 when T =
∑
X2
i = t is P (T0 ≥ t),

where T0 has a Chi-squared distribution with k degrees of freedom.

Suppose that θ is distributed according to the scale mixture of multivari-

ate normals given by

v2 ∼ Exponential(λ)

θ|v2 ∼ Nk(0, v
2I)

Let B̄χ2
k
(t) be the maximum Bayes factor for such H1 priors when T = t.

Figures 8, 9, 10, and 11 plot the ratio B̄χ2
k
(t)/B̄∗(p(t)) versus t for k =

1, 3, 6, 15, 30, respectively, with points corresponding to p = .10, .05, .01, .001

indicated.

As k goes to infinity here, the Chi-squared distributions look more and

Normal, and the distribution of T for any θ not too far from 0 looks more and

more like the null distribution shifted to the right. The situation converges

to the one-sided z test situation as k goes to infinity, and the hierarchical

prior on v2 corresponds to an Exponential prior for a one-sided z test.

3 Discussion

We have seen that, in a variety of standard testing situations, the maximum

Bayes factor against the null hypothesis , maximized over a large class of

17
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“reasonable” alternative prior distributions, is at most a bit bigger than

B̄∗(p) = 1/epln(1/p) for p ≤ e−1. For H1 priors for which the median p-

value is between .05 and .01, we have seen that (3/4)B̄∗(p) is a reasonable

ballpark estimate of the Bayes factor for .05 ≥ p ≥ .001. However, for two-

sided t-tests with small degree of freedom, the Bayes factor against the null

can be significantly larger that B̄∗(p) for some “reasonable” priors on the

alternative. These results can be viewed as emphasizing and extending the

implications of the Edwards-Lindman-Savage bound B̄NOR(t) above.

Numerous previous authors, in addition to those mentioned above, have

considered the calibration of the evidence corresponding to p-values. Bayesian

p-value calibrations, as in Good (1982), and objective Bayesian model-selection

procedures like the BIC (Bayesian Information Criterion) of Schwarz (1978)

typically depend on sample size. However, as discussed in Efron and Gous

(2001) and in references given there, the value of the sample size is some-

times ambiguous. The approximate upper bound B̄∗(p) = 1/epln(1/p) here

obviously does not depend on sample size.

As can be seen from Curve 2C in Figure 2 (and as has been pointed

out personally to the author by Brad Efron), B̄∗(p) is not so different from

the Efron-Gous interpretation of Fisher’s scale of evidence in terms of Bayes

factors. However, the common opinion concerning the strength of evidence

against the null inherent in p-values of .05 and .01, to the extent that such

common opinion can be expressed numerically as a Bayes factor, seems to

be that the evidence is stronger than would correspond to a Bayes factor of
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about 2 (for p=.05) and about 6 or 8 (for p=.01). And indeed, Efron and

Gous (2001) write that the large-n Jeffreys interpretation of p=.01 as “barely

worth mentioning” would be “a shocking assertion to the medical scientist

for whom a .01 significance level settles the issue”. A Bayes factor of 6 or 8

is certainly worth mentioning, but it does not settle the issue, either.

It should be noted that a formula equivalent to B̄∗(p) = 1/epln(1/p)

appears already in Vovk(1993).

The N(0, SD = τ) alternative priors on θ/σ considered for two-sided

t-tests have the very unrealistic feature that the conditional variance of θ,

given σ, is a constant multiple of σ2. It might be more reasonable (whether

in the frequentist scenario or in the Bayesian scenario) to assume that the

distribution of θ/σ is some mixture of mean 0 Normal distributions. If, for

example, the conditional distribution of θ, given σ, were assumed N(0, SD =

τ(σ)) for some function τ(σ), (with τ(σ) perhaps even constant, making θ and

σ independent), then the marginal distribution of θ/σ would be a mixture

of mean 0 Normals. If the Bayes factor for a certain p-value p0 is less than

B̄∗(p0) for any N(0, SD = τ) prior on θ/σ when the degrees of freedom

are at least k(p0), then ≥ k(p0) degrees of freedom would guarantee that

the Bayes factor for that p-value p0 will be less than B̄∗(p0) when the the

prior on θ/σ is a mixture of mean 0 Normal priors. And indeed, an H1 prior

on θ/σ which is a genuine mixture of different mean 0 Normal distributions

would generally need fewer than k(p0) degrees of freedom for B̄∗(p0) to be

an upper bound on the Bayes factor when the p-value is p0.
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To expand on the point of the previous paragraph, there is no rea-

son to think that H1 distributions considered above (whether frequentist or

Bayesian) should actually be Normal, or Absolute-Normal, or Exponential,

or the hierarchical priors for the Chi-squared case.. However, our bounds

over such classes of priors apply to priors that are mixtures of priors in the

corresponding classes. If our (approximate) bound B̄∗(p) on f(p) does not

hold for a large family of tests of a certain type (e.g., for a large collection

of one-sided z-tests), then it must be that the actual distribution of parame-

ter values under the alternative is not well approximated by mixtures of the

distributions studied here.

Here is a possible feature of hypothesis testing that might cause B̄∗(p) to

not be an upper bound on f(p) in a frequentist sense, for example in the case

of one-sided z tests. Suppose that, for many of the null hypotheses tested,

there was preliminary data suggesting that the null hypothesis might be false

by about two standard deviations on the scale of measurement in the “of-

ficial” experiment. Here, “official experiment” means an experiment whose

result might be published, at least if the result is interesting (= small-enough

p-value?), typically without the preliminary background data entering into

the analysis. Null hypotheses without sufficiently promising preliminary data

might tend to be winnowed out before progressing to an “official” test. Such

winnowing would affect both the prior odds r and the density f(p). The

post-winnowing H1 density of the normal mean might have a mode a stan-

dard deviation or two to the right of the null value. Just to illustrate the
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difficulty, suppose all false null values of the normal mean are between 1.5

and 2 standard deviations from the null value. Then the Bayes factor against

the null for a z-score of 1.75 (one-sided p-value p= .04 ) would be at least

exp(1.752 − 0.252)/2 = exp(1.5) = 4.48, while B̄∗(.04) = 2.86.

Another relevant issue is stopping rules for collecting data. If the p-value

is a bit greater than some cut-off value like .05 or .01, then the experimenter

might collect more data in hopes that additional data will result in a decrease

in the p-value to below the cut-off value. Such a sampling procedure would

cause the final p-value to not have a Uniform[0,1] distribution when the null

is true. However, suppose a Bayesian has an H1 prior distribution for which

B̄∗(p) is an upper bound on the Bayes factor against the null for any sample

size. (An example would be a two-sided z-test of H0:θ = 0 versus H1:θ 6= 0,

with a normal mean=0 H1 prior.) Then because non-informative stopping

rules do not affect the posterior distribution, the Bayes factor against H0

would still be ≤ B̄∗(p) for the final p-value p, providing that the stopping

rule is non-informative. Likewise in the frequentist scenario, if the parameter

distribution under H1 is such that the ratio of posterior odds to prior odds

is bounded above by B̄∗(p) for any fixed sample size, then the posterior to

prior odds ratio will still be bounded above by B̄∗(p) (for the final p-value p)

if the stopping rule for sampling, given the data, is not affected by the value

of the parameter.

P-values, as commonly used in hypothesis testing, have the advantage

that they require no consideration of alternative behavior beyond that im-
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plicit in the choice of the test statistic, as in, “If the null is false, then it

seems like the test statistic T should be stochastically larger than under the

null, so let’s calculate the p-value based on T .” P-values, as commonly in-

terpreted by less sophisticated users, also have the “advantage” that they

are thought to give a a universal measure of the posterior plausibility of the

null which does not need to be adjusted according to the type of test used

or perhaps even according to the prior plausibility of the null. P-values have

the disadvantage that the “advantage” in the previous sentence has no log-

ical basis. Obviously, if all tested nulls are true, then all tested nulls with

a specified p-value will also be true, and likewise if all tested nulls are false.

Also, the example of testing H0 : θ = 0 versus H1 : θ 6= 0 based on the

p-value P (|T | ≥ |t|) when T − θ has a density proportional to exp(−x10500)

(which is a slightly smoothed Uniform[-1,1]distribution) shows that an obser-

vation with an infinitesimal p-value can correspond to essentially no evidence

against the null hypothesis in terms of likelihood ratios. Perhaps some so-

phisticated users of p-values have learned how to interpret them sensibly in

their own fields, but there do seem to be serious systemic problems in science

with the interpretation of p-values. Ioannidis (2005) describes such systemic

problems with p-values in medicine. Ioannidis gives various reasons for why

one should not be surprised to have most medical null hypotheses rejected

at the .05 level to actually be true nulls. The B̄∗(p) = 1/{epln(1/p)} bound

may be viewed as complementing Ioannidis (2005) in terms of the sensible

assessment of medical research.
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The use of B̄∗(p) as an upper bound on f(p) (and the use of (3/4)B̄∗(p)

as an estimate of the Bayes factor under the assumption that the median p-

value for false nulls is between .05 and .01) has a good justification for many

standard situations, such as z tests and two-sided t tests with moderately

large degrees of freedom, at least if mixtures of the sorts of priors considered

above in those situations are appropriate. The behavior of parameters in

higher dimensional problems like Chi-square tests (either in the sense of

subjective prior distributions or in the sense of frequentist behavior in a

large class of tests) is less easy to model convincingly, so the justification of

B̄∗(p) in these situations is more tentative. However, the situations where

the bound B̄∗(p) has a good justification constitute a substantial fraction of

real-world hypothesis tests.

As noted above, a major “advantage” of p-values is that they require

minimal input and a major disadvantage is they are hard, perhaps impossible,

to interpret directly in any rational way, for example in a way that has some

decision-theoretic justification. Calculating B̄∗(p) requires no more input,

aside from a couple of keystrokes on a calculator, than the p-value itself,

yet it does have a clear interpretation in terms of what happens when null

hypotheses are sorted according to p-values. For example, the fact that

B̄∗(.01) = 7.99 implies (assuming that B̄∗(.01) really is an upper bound on

f(.01) ) that the ratio of false to true nulls among tests with p close to .01 is at

most 8 times the ratio of false to true nulls in the overall population of tests.

Even for those who take a dim view of subjective probability, this bound is an
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easily understandable statement about the “p-value sorting process” which

is much more useful with respect to sensible decision making than saying

that “only one percent of true nulls have a p-value this small or smaller”. In

neither the above frequentist interpretation of B̄∗(p) nor (of course) in the

Bayesian interpretation of B̄∗(p) is the role of the prior odds r obscured, as

it is with p-values themselves.

For a Bayesian with unlimited time and energy who wants to assess

his/her posterior probability of the null, the “correct” approach is of course

to specify priors distributions, or perhaps a range of plausible prior distri-

butions, and to go through the usual Bayesian calculations. For a Bayesian

who would like a quick and (only slightly?) dirty first pass at the problem,

the B̄∗(p) “upper-bound rule-of-thumb” is extremely appealing.

And so herewith a modest proposal. Let’s tell our students and clients

that, in a large family of z tests or of t tests with degrees of freedom at

least in the teens, the false-to-true odds among tests with p-value p is un-

likely to be much more than B̄∗(p) = 1/{epln(1/p)} times the false-to-true

odds in the whole family of tests, and that often, perhaps typically, the odds

will be about (3/4)B̄∗(p) times the false-to-true odds in the whole family

of tests. We should, of course, try to explain the assumptions behind the

B̄∗(p) = 1/{epln(1/p)} upper bound and the (3/4)B̄∗(p) ballpark estimate.

Our better students might even have some awareness and appreciation of

these assumptions if our explanations are accompanied by homework prob-

lems (and, better yet, test problems) involving the calculation of Bayes fac-
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tors for various H1 prior distributions. However, even for those students

and clients with whom this “assumptions” business does not register, there

are significant benefits of this modest proposal. As things stand now, the

p-value itself is usually the only number floating around which supposedly

gives a measure of the evidence against H0, and the “one-in-twenty” 05 or

the “one-in-a-hundred” .01 give the impression of rendering H0 implausible

or very implausible. Even if the B̄∗(.05) = 2.46 and B̄∗(.01) = 7.99 values

are dubious in some cases, they are still likely to give a better assessment

of the evidence against H0 than the typical “transpose the conditional” in-

terpretation of .05 and .01. And indeed, as mentioned above, these Bayes

factors are in rough agreement with the Efron-Gous(2001) interpretation of

Fisher’s scale of evidence for p-values. Furthermore, a bound on and/or es-

timate of the Bayes factor might cause people to more sensibly incorporate

an assessment of the prior odds into their considerations. If H0 is a fake null

which one has no reason to think true, then even a large p-value does not

render it probable. Conversely, if the falsity of H0 is farfetched (e.g., prior

odds of only .01 against H0), then the posterior odds against H0 may still

be small even with a traditionally small p-value like .01. Clients and perspi-

cacious students will naturally ask about Bayes factors in other situations.

The proper answer to that question, I believe, is to say that the Bayes factor

will often be more variable over reasonable classes of priors in such other

situations, but that B̄∗(p) = 1/{epln(1/p)} is typically an upper bound over

some reasonable classes of priors, and that B̄∗(p) = 1/{epln(1/p)} will gen-
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erally give a more sensible interpretation of the evidence against H0 than

traditional naive interpretations of p-values.

Finally, lets consider where the burden of proof should fall in situations

where the Bayes factor against H0 has a wide range of plausible values.

To return to our frequentist scenario, suppose we have a large class of null

hypothesis tests, with r being the ratio of false to true hypotheses within

the class. The philosophy of hypothesis testing, as typically presented, is

that H0 is innocent until proven guilty, i.e., that H0 is to be rejected only

if the data render H0 implausible. If the ratio of false to true nulls among

tests in our large class having a p-value near .05 can plausibly be anywhere

from 2r to 7r, then treating H0 as innocent until proven guilty should cause

one to focus on the factor of 2 rather than on the factor of 7. And so, if

for some reasonable class of H1 priors we have B̄∗(p) = 1/{epln(1/p)} as an

(approximate) upper bound on the Bayes factor against H0, then we should

be hesitant to say that the evidence against H0 corresponding to a p-value

of .05 in this class changes the odds against H0 by more than a factor of

2.46. Perhaps there are areas of science in which certain p-values correspond

to stronger evidence against the null hypothesis than is consistent with the

bound B̄∗(p) = 1/{epln(1/p)}. Identifying such areas and explaining how it

comes to be that the bound B̄∗(p) = 1/{epln(1/p)} is violated could be very

interesting. Absent a justification for doing otherwise, however, it might be

reasonable to adopt B̄∗(p) = 1/{epln(1/p)} as a default upper bound on the

evidence against the null hypothesis.
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